In read_batch mode, we now let the code write out the index value
[rsync/rsync.git] / io.c
... / ...
CommitLineData
1/* -*- c-file-style: "linux" -*-
2 *
3 * Copyright (C) 1996-2001 by Andrew Tridgell
4 * Copyright (C) Paul Mackerras 1996
5 * Copyright (C) 2001, 2002 by Martin Pool <mbp@samba.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22/**
23 * @file io.c
24 *
25 * Socket and pipe I/O utilities used in rsync.
26 *
27 * rsync provides its own multiplexing system, which is used to send
28 * stderr and stdout over a single socket. We need this because
29 * stdout normally carries the binary data stream, and stderr all our
30 * error messages.
31 *
32 * For historical reasons this is off during the start of the
33 * connection, but it's switched on quite early using
34 * io_start_multiplex_out() and io_start_multiplex_in().
35 **/
36
37#include "rsync.h"
38
39/** If no timeout is specified then use a 60 second select timeout */
40#define SELECT_TIMEOUT 60
41
42extern int bwlimit;
43extern size_t bwlimit_writemax;
44extern int verbose;
45extern int io_timeout;
46extern int am_server;
47extern int am_daemon;
48extern int am_sender;
49extern int eol_nulls;
50extern int checksum_seed;
51extern int protocol_version;
52extern char *remote_filesfrom_file;
53extern struct stats stats;
54
55const char phase_unknown[] = "unknown";
56int select_timeout = SELECT_TIMEOUT;
57int batch_fd = -1;
58
59/**
60 * The connection might be dropped at some point; perhaps because the
61 * remote instance crashed. Just giving the offset on the stream is
62 * not very helpful. So instead we try to make io_phase_name point to
63 * something useful.
64 *
65 * For buffered/multiplexed I/O these names will be somewhat
66 * approximate; perhaps for ease of support we would rather make the
67 * buffer always flush when a single application-level I/O finishes.
68 *
69 * @todo Perhaps we want some simple stack functionality, but there's
70 * no need to overdo it.
71 **/
72const char *io_write_phase = phase_unknown;
73const char *io_read_phase = phase_unknown;
74
75/** Ignore EOF errors while reading a module listing if the remote
76 version is 24 or less. */
77int kludge_around_eof = False;
78
79int msg_fd_in = -1;
80int msg_fd_out = -1;
81
82static int io_multiplexing_out;
83static int io_multiplexing_in;
84static int sock_f_in = -1;
85static int sock_f_out = -1;
86static time_t last_io;
87static int no_flush;
88
89static int write_batch_monitor_in = -1;
90static int write_batch_monitor_out = -1;
91
92static int io_filesfrom_f_in = -1;
93static int io_filesfrom_f_out = -1;
94static char io_filesfrom_buf[2048];
95static char *io_filesfrom_bp;
96static char io_filesfrom_lastchar;
97static int io_filesfrom_buflen;
98
99static void read_loop(int fd, char *buf, size_t len);
100
101struct redo_list {
102 struct redo_list *next;
103 int num;
104};
105
106static struct redo_list *redo_list_head;
107static struct redo_list *redo_list_tail;
108
109struct msg_list {
110 struct msg_list *next;
111 char *buf;
112 int len;
113};
114
115static struct msg_list *msg_list_head;
116static struct msg_list *msg_list_tail;
117
118static void redo_list_add(int num)
119{
120 struct redo_list *rl;
121
122 if (!(rl = new(struct redo_list)))
123 exit_cleanup(RERR_MALLOC);
124 rl->next = NULL;
125 rl->num = num;
126 if (redo_list_tail)
127 redo_list_tail->next = rl;
128 else
129 redo_list_head = rl;
130 redo_list_tail = rl;
131}
132
133static void check_timeout(void)
134{
135 time_t t;
136
137 if (!io_timeout)
138 return;
139
140 if (!last_io) {
141 last_io = time(NULL);
142 return;
143 }
144
145 t = time(NULL);
146
147 if (t - last_io >= io_timeout) {
148 if (!am_server && !am_daemon) {
149 rprintf(FERROR, "io timeout after %d seconds - exiting\n",
150 (int)(t-last_io));
151 }
152 exit_cleanup(RERR_TIMEOUT);
153 }
154}
155
156/* Note the fds used for the main socket (which might really be a pipe
157 * for a local transfer, but we can ignore that). */
158void io_set_sock_fds(int f_in, int f_out)
159{
160 sock_f_in = f_in;
161 sock_f_out = f_out;
162}
163
164/** Setup the fd used to receive MSG_* messages. Only needed when
165 * we're the generator because the sender and receiver both use the
166 * multiplexed I/O setup. */
167void set_msg_fd_in(int fd)
168{
169 msg_fd_in = fd;
170}
171
172/** Setup the fd used to send our MSG_* messages. Only needed when
173 * we're the receiver because the generator and the sender both use
174 * the multiplexed I/O setup. */
175void set_msg_fd_out(int fd)
176{
177 msg_fd_out = fd;
178 set_nonblocking(msg_fd_out);
179}
180
181/* Add a message to the pending MSG_* list. */
182static void msg_list_add(int code, char *buf, int len)
183{
184 struct msg_list *ml;
185
186 if (!(ml = new(struct msg_list)))
187 exit_cleanup(RERR_MALLOC);
188 ml->next = NULL;
189 if (!(ml->buf = new_array(char, len+4)))
190 exit_cleanup(RERR_MALLOC);
191 SIVAL(ml->buf, 0, ((code+MPLEX_BASE)<<24) | len);
192 memcpy(ml->buf+4, buf, len);
193 ml->len = len+4;
194 if (msg_list_tail)
195 msg_list_tail->next = ml;
196 else
197 msg_list_head = ml;
198 msg_list_tail = ml;
199}
200
201void send_msg(enum msgcode code, char *buf, int len)
202{
203 msg_list_add(code, buf, len);
204 msg_list_push(NORMAL_FLUSH);
205}
206
207/** Read a message from the MSG_* fd and dispatch it. This is only
208 * called by the generator. */
209static void read_msg_fd(void)
210{
211 char buf[2048];
212 size_t n;
213 int fd = msg_fd_in;
214 int tag, len;
215
216 /* Temporarily disable msg_fd_in. This is needed to avoid looping back
217 * to this routine from read_timeout() and writefd_unbuffered(). */
218 msg_fd_in = -1;
219
220 read_loop(fd, buf, 4);
221 tag = IVAL(buf, 0);
222
223 len = tag & 0xFFFFFF;
224 tag = (tag >> 24) - MPLEX_BASE;
225
226 switch (tag) {
227 case MSG_DONE:
228 if (len != 0) {
229 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
230 exit_cleanup(RERR_STREAMIO);
231 }
232 redo_list_add(-1);
233 break;
234 case MSG_REDO:
235 if (len != 4) {
236 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
237 exit_cleanup(RERR_STREAMIO);
238 }
239 read_loop(fd, buf, 4);
240 redo_list_add(IVAL(buf,0));
241 break;
242 case MSG_INFO:
243 case MSG_ERROR:
244 case MSG_LOG:
245 while (len) {
246 n = len;
247 if (n >= sizeof buf)
248 n = sizeof buf - 1;
249 read_loop(fd, buf, n);
250 rwrite((enum logcode)tag, buf, n);
251 len -= n;
252 }
253 break;
254 default:
255 rprintf(FERROR, "unknown message %d:%d\n", tag, len);
256 exit_cleanup(RERR_STREAMIO);
257 }
258
259 msg_fd_in = fd;
260}
261
262/* Try to push messages off the list onto the wire. If we leave with more
263 * to do, return 0. On error, return -1. If everything flushed, return 1.
264 * This is only active in the receiver. */
265int msg_list_push(int flush_it_all)
266{
267 static int written = 0;
268 struct timeval tv;
269 fd_set fds;
270
271 if (msg_fd_out < 0)
272 return -1;
273
274 while (msg_list_head) {
275 struct msg_list *ml = msg_list_head;
276 int n = write(msg_fd_out, ml->buf + written, ml->len - written);
277 if (n < 0) {
278 if (errno == EINTR)
279 continue;
280 if (errno != EWOULDBLOCK && errno != EAGAIN)
281 return -1;
282 if (!flush_it_all)
283 return 0;
284 FD_ZERO(&fds);
285 FD_SET(msg_fd_out, &fds);
286 tv.tv_sec = select_timeout;
287 tv.tv_usec = 0;
288 if (!select(msg_fd_out+1, NULL, &fds, NULL, &tv))
289 check_timeout();
290 } else if ((written += n) == ml->len) {
291 free(ml->buf);
292 msg_list_head = ml->next;
293 if (!msg_list_head)
294 msg_list_tail = NULL;
295 free(ml);
296 written = 0;
297 }
298 }
299 return 1;
300}
301
302int get_redo_num(void)
303{
304 struct redo_list *next;
305 int num;
306
307 while (!redo_list_head)
308 read_msg_fd();
309
310 num = redo_list_head->num;
311 next = redo_list_head->next;
312 free(redo_list_head);
313 redo_list_head = next;
314 if (!next)
315 redo_list_tail = NULL;
316
317 return num;
318}
319
320/**
321 * When we're the receiver and we have a local --files-from list of names
322 * that needs to be sent over the socket to the sender, we have to do two
323 * things at the same time: send the sender a list of what files we're
324 * processing and read the incoming file+info list from the sender. We do
325 * this by augmenting the read_timeout() function to copy this data. It
326 * uses the io_filesfrom_buf to read a block of data from f_in (when it is
327 * ready, since it might be a pipe) and then blast it out f_out (when it
328 * is ready to receive more data).
329 */
330void io_set_filesfrom_fds(int f_in, int f_out)
331{
332 io_filesfrom_f_in = f_in;
333 io_filesfrom_f_out = f_out;
334 io_filesfrom_bp = io_filesfrom_buf;
335 io_filesfrom_lastchar = '\0';
336 io_filesfrom_buflen = 0;
337}
338
339/**
340 * It's almost always an error to get an EOF when we're trying to read
341 * from the network, because the protocol is self-terminating.
342 *
343 * However, there is one unfortunate cases where it is not, which is
344 * rsync <2.4.6 sending a list of modules on a server, since the list
345 * is terminated by closing the socket. So, for the section of the
346 * program where that is a problem (start_socket_client),
347 * kludge_around_eof is True and we just exit.
348 */
349static void whine_about_eof(int fd)
350{
351 if (kludge_around_eof && fd == sock_f_in)
352 exit_cleanup(0);
353
354 rprintf(FERROR, RSYNC_NAME ": connection unexpectedly closed "
355 "(%.0f bytes read so far)\n",
356 (double)stats.total_read);
357
358 exit_cleanup(RERR_STREAMIO);
359}
360
361
362/**
363 * Read from a socket with I/O timeout. return the number of bytes
364 * read. If no bytes can be read then exit, never return a number <= 0.
365 *
366 * TODO: If the remote shell connection fails, then current versions
367 * actually report an "unexpected EOF" error here. Since it's a
368 * fairly common mistake to try to use rsh when ssh is required, we
369 * should trap that: if we fail to read any data at all, we should
370 * give a better explanation. We can tell whether the connection has
371 * started by looking e.g. at whether the remote version is known yet.
372 */
373static int read_timeout(int fd, char *buf, size_t len)
374{
375 int n, ret = 0;
376
377 io_flush(NORMAL_FLUSH);
378
379 while (ret == 0) {
380 /* until we manage to read *something* */
381 fd_set r_fds, w_fds;
382 struct timeval tv;
383 int maxfd = fd;
384 int count;
385
386 FD_ZERO(&r_fds);
387 FD_ZERO(&w_fds);
388 FD_SET(fd, &r_fds);
389 if (msg_fd_in >= 0) {
390 FD_SET(msg_fd_in, &r_fds);
391 if (msg_fd_in > maxfd)
392 maxfd = msg_fd_in;
393 } else if (msg_list_head) {
394 FD_SET(msg_fd_out, &w_fds);
395 if (msg_fd_out > maxfd)
396 maxfd = msg_fd_out;
397 }
398 if (io_filesfrom_f_out >= 0) {
399 int new_fd;
400 if (io_filesfrom_buflen == 0) {
401 if (io_filesfrom_f_in >= 0) {
402 FD_SET(io_filesfrom_f_in, &r_fds);
403 new_fd = io_filesfrom_f_in;
404 } else {
405 io_filesfrom_f_out = -1;
406 new_fd = -1;
407 }
408 } else {
409 FD_SET(io_filesfrom_f_out, &w_fds);
410 new_fd = io_filesfrom_f_out;
411 }
412 if (new_fd > maxfd)
413 maxfd = new_fd;
414 }
415
416 tv.tv_sec = select_timeout;
417 tv.tv_usec = 0;
418
419 errno = 0;
420
421 count = select(maxfd + 1, &r_fds, &w_fds, NULL, &tv);
422
423 if (count <= 0) {
424 if (errno == EBADF)
425 exit_cleanup(RERR_SOCKETIO);
426 check_timeout();
427 continue;
428 }
429
430 if (msg_fd_in >= 0 && FD_ISSET(msg_fd_in, &r_fds))
431 read_msg_fd();
432 else if (msg_list_head && FD_ISSET(msg_fd_out, &w_fds))
433 msg_list_push(NORMAL_FLUSH);
434
435 if (io_filesfrom_f_out >= 0) {
436 if (io_filesfrom_buflen) {
437 if (FD_ISSET(io_filesfrom_f_out, &w_fds)) {
438 int l = write(io_filesfrom_f_out,
439 io_filesfrom_bp,
440 io_filesfrom_buflen);
441 if (l > 0) {
442 if (!(io_filesfrom_buflen -= l))
443 io_filesfrom_bp = io_filesfrom_buf;
444 else
445 io_filesfrom_bp += l;
446 } else {
447 /* XXX should we complain? */
448 io_filesfrom_f_out = -1;
449 }
450 }
451 } else if (io_filesfrom_f_in >= 0) {
452 if (FD_ISSET(io_filesfrom_f_in, &r_fds)) {
453 int l = read(io_filesfrom_f_in,
454 io_filesfrom_buf,
455 sizeof io_filesfrom_buf);
456 if (l <= 0) {
457 /* Send end-of-file marker */
458 io_filesfrom_buf[0] = '\0';
459 io_filesfrom_buf[1] = '\0';
460 io_filesfrom_buflen = io_filesfrom_lastchar? 2 : 1;
461 io_filesfrom_f_in = -1;
462 } else {
463 if (!eol_nulls) {
464 char *s = io_filesfrom_buf + l;
465 /* Transform CR and/or LF into '\0' */
466 while (s-- > io_filesfrom_buf) {
467 if (*s == '\n' || *s == '\r')
468 *s = '\0';
469 }
470 }
471 if (!io_filesfrom_lastchar) {
472 /* Last buf ended with a '\0', so don't
473 * let this buf start with one. */
474 while (l && !*io_filesfrom_bp)
475 io_filesfrom_bp++, l--;
476 }
477 if (!l)
478 io_filesfrom_bp = io_filesfrom_buf;
479 else {
480 char *f = io_filesfrom_bp;
481 char *t = f;
482 char *eob = f + l;
483 /* Eliminate any multi-'\0' runs. */
484 while (f != eob) {
485 if (!(*t++ = *f++)) {
486 while (f != eob && !*f)
487 f++, l--;
488 }
489 }
490 io_filesfrom_lastchar = f[-1];
491 }
492 io_filesfrom_buflen = l;
493 }
494 }
495 }
496 }
497
498 if (!FD_ISSET(fd, &r_fds))
499 continue;
500
501 n = read(fd, buf, len);
502
503 if (n <= 0) {
504 if (n == 0)
505 whine_about_eof(fd); /* Doesn't return. */
506 if (errno == EINTR || errno == EWOULDBLOCK
507 || errno == EAGAIN)
508 continue;
509
510 /* Don't write errors on a dead socket. */
511 if (fd == sock_f_in)
512 io_multiplexing_close();
513 rsyserr(FERROR, errno, "read error");
514 exit_cleanup(RERR_STREAMIO);
515 }
516
517 buf += n;
518 len -= n;
519 ret += n;
520
521 if (io_timeout && fd == sock_f_in)
522 last_io = time(NULL);
523 }
524
525 return ret;
526}
527
528/**
529 * Read a line into the "fname" buffer (which must be at least MAXPATHLEN
530 * characters long).
531 */
532int read_filesfrom_line(int fd, char *fname)
533{
534 char ch, *s, *eob = fname + MAXPATHLEN - 1;
535 int cnt;
536 int reading_remotely = remote_filesfrom_file != NULL;
537 int nulls = eol_nulls || reading_remotely;
538
539 start:
540 s = fname;
541 while (1) {
542 cnt = read(fd, &ch, 1);
543 if (cnt < 0 && (errno == EWOULDBLOCK
544 || errno == EINTR || errno == EAGAIN)) {
545 struct timeval tv;
546 fd_set fds;
547 FD_ZERO(&fds);
548 FD_SET(fd, &fds);
549 tv.tv_sec = select_timeout;
550 tv.tv_usec = 0;
551 if (!select(fd+1, &fds, NULL, NULL, &tv))
552 check_timeout();
553 continue;
554 }
555 if (cnt != 1)
556 break;
557 if (nulls? !ch : (ch == '\r' || ch == '\n')) {
558 /* Skip empty lines if reading locally. */
559 if (!reading_remotely && s == fname)
560 continue;
561 break;
562 }
563 if (s < eob)
564 *s++ = ch;
565 }
566 *s = '\0';
567
568 /* Dump comments. */
569 if (*fname == '#' || *fname == ';')
570 goto start;
571
572 return s - fname;
573}
574
575
576static char *iobuf_out;
577static int iobuf_out_cnt;
578
579void io_start_buffering_out(void)
580{
581 if (iobuf_out)
582 return;
583 if (!(iobuf_out = new_array(char, IO_BUFFER_SIZE)))
584 out_of_memory("io_start_buffering_out");
585 iobuf_out_cnt = 0;
586}
587
588
589static char *iobuf_in;
590static size_t iobuf_in_siz;
591
592void io_start_buffering_in(void)
593{
594 if (iobuf_in)
595 return;
596 iobuf_in_siz = 2 * IO_BUFFER_SIZE;
597 if (!(iobuf_in = new_array(char, iobuf_in_siz)))
598 out_of_memory("io_start_buffering_in");
599}
600
601
602void io_end_buffering(void)
603{
604 io_flush(NORMAL_FLUSH);
605 if (!io_multiplexing_out) {
606 free(iobuf_out);
607 iobuf_out = NULL;
608 }
609}
610
611
612/**
613 * Continue trying to read len bytes - don't return until len has been
614 * read.
615 **/
616static void read_loop(int fd, char *buf, size_t len)
617{
618 while (len) {
619 int n = read_timeout(fd, buf, len);
620
621 buf += n;
622 len -= n;
623 }
624}
625
626
627/**
628 * Read from the file descriptor handling multiplexing - return number
629 * of bytes read.
630 *
631 * Never returns <= 0.
632 */
633static int readfd_unbuffered(int fd, char *buf, size_t len)
634{
635 static size_t remaining;
636 static size_t iobuf_in_ndx;
637 int tag, ret = 0;
638 char line[1024];
639
640 if (!iobuf_in || fd != sock_f_in)
641 return read_timeout(fd, buf, len);
642
643 if (!io_multiplexing_in && remaining == 0) {
644 remaining = read_timeout(fd, iobuf_in, iobuf_in_siz);
645 iobuf_in_ndx = 0;
646 }
647
648 while (ret == 0) {
649 if (remaining) {
650 len = MIN(len, remaining);
651 memcpy(buf, iobuf_in + iobuf_in_ndx, len);
652 iobuf_in_ndx += len;
653 remaining -= len;
654 ret = len;
655 break;
656 }
657
658 read_loop(fd, line, 4);
659 tag = IVAL(line, 0);
660
661 remaining = tag & 0xFFFFFF;
662 tag = (tag >> 24) - MPLEX_BASE;
663
664 switch (tag) {
665 case MSG_DATA:
666 if (remaining > iobuf_in_siz) {
667 if (!(iobuf_in = realloc_array(iobuf_in, char,
668 remaining)))
669 out_of_memory("readfd_unbuffered");
670 iobuf_in_siz = remaining;
671 }
672 read_loop(fd, iobuf_in, remaining);
673 iobuf_in_ndx = 0;
674 break;
675 case MSG_INFO:
676 case MSG_ERROR:
677 if (remaining >= sizeof line) {
678 rprintf(FERROR, "multiplexing overflow %d:%ld\n\n",
679 tag, (long)remaining);
680 exit_cleanup(RERR_STREAMIO);
681 }
682 read_loop(fd, line, remaining);
683 rwrite((enum logcode)tag, line, remaining);
684 remaining = 0;
685 break;
686 default:
687 rprintf(FERROR, "unexpected tag %d\n", tag);
688 exit_cleanup(RERR_STREAMIO);
689 }
690 }
691
692 if (remaining == 0)
693 io_flush(NORMAL_FLUSH);
694
695 return ret;
696}
697
698
699
700/**
701 * Do a buffered read from @p fd. Don't return until all @p n bytes
702 * have been read. If all @p n can't be read then exit with an
703 * error.
704 **/
705static void readfd(int fd, char *buffer, size_t N)
706{
707 int ret;
708 size_t total = 0;
709
710 while (total < N) {
711 ret = readfd_unbuffered(fd, buffer + total, N-total);
712 total += ret;
713 }
714
715 if (fd == write_batch_monitor_in) {
716 if ((size_t)write(batch_fd, buffer, total) != total)
717 exit_cleanup(RERR_FILEIO);
718 }
719
720 if (fd == sock_f_in)
721 stats.total_read += total;
722}
723
724
725int32 read_int(int f)
726{
727 char b[4];
728 int32 ret;
729
730 readfd(f,b,4);
731 ret = IVAL(b,0);
732 if (ret == (int32)0xffffffff)
733 return -1;
734 return ret;
735}
736
737int64 read_longint(int f)
738{
739 int64 ret;
740 char b[8];
741 ret = read_int(f);
742
743 if ((int32)ret != (int32)0xffffffff)
744 return ret;
745
746#ifdef NO_INT64
747 rprintf(FERROR,"Integer overflow - attempted 64 bit offset\n");
748 exit_cleanup(RERR_UNSUPPORTED);
749#else
750 readfd(f,b,8);
751 ret = IVAL(b,0) | (((int64)IVAL(b,4))<<32);
752#endif
753
754 return ret;
755}
756
757void read_buf(int f,char *buf,size_t len)
758{
759 readfd(f,buf,len);
760}
761
762void read_sbuf(int f,char *buf,size_t len)
763{
764 readfd(f, buf, len);
765 buf[len] = 0;
766}
767
768unsigned char read_byte(int f)
769{
770 unsigned char c;
771 readfd(f, (char *)&c, 1);
772 return c;
773}
774
775
776/**
777 * Sleep after writing to limit I/O bandwidth usage.
778 *
779 * @todo Rather than sleeping after each write, it might be better to
780 * use some kind of averaging. The current algorithm seems to always
781 * use a bit less bandwidth than specified, because it doesn't make up
782 * for slow periods. But arguably this is a feature. In addition, we
783 * ought to take the time used to write the data into account.
784 *
785 * During some phases of big transfers (file FOO is uptodate) this is
786 * called with a small bytes_written every time. As the kernel has to
787 * round small waits up to guarantee that we actually wait at least the
788 * requested number of microseconds, this can become grossly inaccurate.
789 * We therefore keep track of the bytes we've written over time and only
790 * sleep when the accumulated delay is at least 1 tenth of a second.
791 **/
792static void sleep_for_bwlimit(int bytes_written)
793{
794 static struct timeval prior_tv;
795 static long total_written = 0;
796 struct timeval tv, start_tv;
797 long elapsed_usec, sleep_usec;
798
799#define ONE_SEC 1000000L /* # of microseconds in a second */
800
801 if (!bwlimit)
802 return;
803
804 total_written += bytes_written;
805
806 gettimeofday(&start_tv, NULL);
807 if (prior_tv.tv_sec) {
808 elapsed_usec = (start_tv.tv_sec - prior_tv.tv_sec) * ONE_SEC
809 + (start_tv.tv_usec - prior_tv.tv_usec);
810 total_written -= elapsed_usec * bwlimit / (ONE_SEC/1024);
811 if (total_written < 0)
812 total_written = 0;
813 }
814
815 sleep_usec = total_written * (ONE_SEC/1024) / bwlimit;
816 if (sleep_usec < ONE_SEC / 10) {
817 prior_tv = start_tv;
818 return;
819 }
820
821 tv.tv_sec = sleep_usec / ONE_SEC;
822 tv.tv_usec = sleep_usec % ONE_SEC;
823 select(0, NULL, NULL, NULL, &tv);
824
825 gettimeofday(&prior_tv, NULL);
826 elapsed_usec = (prior_tv.tv_sec - start_tv.tv_sec) * ONE_SEC
827 + (prior_tv.tv_usec - start_tv.tv_usec);
828 total_written = (sleep_usec - elapsed_usec) * bwlimit / (ONE_SEC/1024);
829}
830
831
832/* Write len bytes to the file descriptor fd, looping as necessary to get
833 * the job done and also (in the generator) reading any data on msg_fd_in
834 * (to avoid deadlock).
835 *
836 * This function underlies the multiplexing system. The body of the
837 * application never calls this function directly. */
838static void writefd_unbuffered(int fd,char *buf,size_t len)
839{
840 size_t n, total = 0;
841 fd_set w_fds, r_fds;
842 int maxfd, count, ret;
843 struct timeval tv;
844
845 no_flush++;
846
847 while (total < len) {
848 FD_ZERO(&w_fds);
849 FD_SET(fd,&w_fds);
850 maxfd = fd;
851
852 if (msg_fd_in >= 0) {
853 FD_ZERO(&r_fds);
854 FD_SET(msg_fd_in,&r_fds);
855 if (msg_fd_in > maxfd)
856 maxfd = msg_fd_in;
857 }
858
859 tv.tv_sec = select_timeout;
860 tv.tv_usec = 0;
861
862 errno = 0;
863 count = select(maxfd + 1, msg_fd_in >= 0 ? &r_fds : NULL,
864 &w_fds, NULL, &tv);
865
866 if (count <= 0) {
867 if (count < 0 && errno == EBADF)
868 exit_cleanup(RERR_SOCKETIO);
869 check_timeout();
870 continue;
871 }
872
873 if (msg_fd_in >= 0 && FD_ISSET(msg_fd_in, &r_fds))
874 read_msg_fd();
875
876 if (!FD_ISSET(fd, &w_fds))
877 continue;
878
879 n = len - total;
880 if (bwlimit && n > bwlimit_writemax)
881 n = bwlimit_writemax;
882 ret = write(fd, buf + total, n);
883
884 if (ret <= 0) {
885 if (ret < 0) {
886 if (errno == EINTR)
887 continue;
888 if (errno == EWOULDBLOCK || errno == EAGAIN) {
889 msleep(1);
890 continue;
891 }
892 }
893
894 /* Don't try to write errors back across the stream. */
895 if (fd == sock_f_out)
896 io_multiplexing_close();
897 rsyserr(FERROR, errno,
898 "writefd_unbuffered failed to write %ld bytes: phase \"%s\"",
899 (long)len, io_write_phase);
900 exit_cleanup(RERR_STREAMIO);
901 }
902
903 total += ret;
904
905 if (fd == sock_f_out) {
906 if (io_timeout)
907 last_io = time(NULL);
908 sleep_for_bwlimit(ret);
909 }
910 }
911
912 no_flush--;
913}
914
915
916/**
917 * Write an message to a multiplexed stream. If this fails then rsync
918 * exits.
919 **/
920static void mplex_write(enum msgcode code, char *buf, size_t len)
921{
922 char buffer[4096];
923 size_t n = len;
924
925 SIVAL(buffer, 0, ((MPLEX_BASE + (int)code)<<24) + len);
926
927 if (n > sizeof buffer - 4)
928 n = sizeof buffer - 4;
929
930 memcpy(&buffer[4], buf, n);
931 writefd_unbuffered(sock_f_out, buffer, n+4);
932
933 len -= n;
934 buf += n;
935
936 if (len)
937 writefd_unbuffered(sock_f_out, buf, len);
938}
939
940
941void io_flush(int flush_it_all)
942{
943 msg_list_push(flush_it_all);
944
945 if (!iobuf_out_cnt || no_flush)
946 return;
947
948 if (io_multiplexing_out)
949 mplex_write(MSG_DATA, iobuf_out, iobuf_out_cnt);
950 else
951 writefd_unbuffered(sock_f_out, iobuf_out, iobuf_out_cnt);
952 iobuf_out_cnt = 0;
953}
954
955
956static void writefd(int fd,char *buf,size_t len)
957{
958 if (fd == msg_fd_out) {
959 rprintf(FERROR, "Internal error: wrong write used in receiver.\n");
960 exit_cleanup(RERR_PROTOCOL);
961 }
962
963 if (fd == sock_f_out)
964 stats.total_written += len;
965
966 if (fd == write_batch_monitor_out) {
967 if ((size_t)write(batch_fd, buf, len) != len)
968 exit_cleanup(RERR_FILEIO);
969 }
970
971 if (!iobuf_out || fd != sock_f_out) {
972 writefd_unbuffered(fd, buf, len);
973 return;
974 }
975
976 while (len) {
977 int n = MIN((int)len, IO_BUFFER_SIZE - iobuf_out_cnt);
978 if (n > 0) {
979 memcpy(iobuf_out+iobuf_out_cnt, buf, n);
980 buf += n;
981 len -= n;
982 iobuf_out_cnt += n;
983 }
984
985 if (iobuf_out_cnt == IO_BUFFER_SIZE)
986 io_flush(NORMAL_FLUSH);
987 }
988}
989
990
991void write_int(int f,int32 x)
992{
993 char b[4];
994 SIVAL(b,0,x);
995 writefd(f,b,4);
996}
997
998
999void write_int_named(int f, int32 x, const char *phase)
1000{
1001 io_write_phase = phase;
1002 write_int(f, x);
1003 io_write_phase = phase_unknown;
1004}
1005
1006
1007/*
1008 * Note: int64 may actually be a 32-bit type if ./configure couldn't find any
1009 * 64-bit types on this platform.
1010 */
1011void write_longint(int f, int64 x)
1012{
1013 char b[8];
1014
1015 if (x <= 0x7FFFFFFF) {
1016 write_int(f, (int)x);
1017 return;
1018 }
1019
1020#ifdef NO_INT64
1021 rprintf(FERROR,"Integer overflow - attempted 64 bit offset\n");
1022 exit_cleanup(RERR_UNSUPPORTED);
1023#else
1024 write_int(f, (int32)0xFFFFFFFF);
1025 SIVAL(b,0,(x&0xFFFFFFFF));
1026 SIVAL(b,4,((x>>32)&0xFFFFFFFF));
1027
1028 writefd(f,b,8);
1029#endif
1030}
1031
1032void write_buf(int f,char *buf,size_t len)
1033{
1034 writefd(f,buf,len);
1035}
1036
1037/** Write a string to the connection */
1038void write_sbuf(int f, char *buf)
1039{
1040 writefd(f, buf, strlen(buf));
1041}
1042
1043void write_byte(int f,unsigned char c)
1044{
1045 writefd(f, (char *)&c, 1);
1046}
1047
1048
1049
1050/**
1051 * Read a line of up to @p maxlen characters into @p buf (not counting
1052 * the trailing null). Strips the (required) trailing newline and all
1053 * carriage returns.
1054 *
1055 * @return 1 for success; 0 for I/O error or truncation.
1056 **/
1057int read_line(int f, char *buf, size_t maxlen)
1058{
1059 while (maxlen) {
1060 buf[0] = 0;
1061 read_buf(f, buf, 1);
1062 if (buf[0] == 0)
1063 return 0;
1064 if (buf[0] == '\n')
1065 break;
1066 if (buf[0] != '\r') {
1067 buf++;
1068 maxlen--;
1069 }
1070 }
1071 *buf = '\0';
1072 return maxlen > 0;
1073}
1074
1075
1076void io_printf(int fd, const char *format, ...)
1077{
1078 va_list ap;
1079 char buf[1024];
1080 int len;
1081
1082 va_start(ap, format);
1083 len = vsnprintf(buf, sizeof buf, format, ap);
1084 va_end(ap);
1085
1086 if (len < 0)
1087 exit_cleanup(RERR_STREAMIO);
1088
1089 write_sbuf(fd, buf);
1090}
1091
1092
1093/** Setup for multiplexing a MSG_* stream with the data stream. */
1094void io_start_multiplex_out(void)
1095{
1096 io_flush(NORMAL_FLUSH);
1097 io_start_buffering_out();
1098 io_multiplexing_out = 1;
1099}
1100
1101/** Setup for multiplexing a MSG_* stream with the data stream. */
1102void io_start_multiplex_in(void)
1103{
1104 io_flush(NORMAL_FLUSH);
1105 io_start_buffering_in();
1106 io_multiplexing_in = 1;
1107}
1108
1109/** Write an message to the multiplexed data stream. */
1110int io_multiplex_write(enum msgcode code, char *buf, size_t len)
1111{
1112 if (!io_multiplexing_out)
1113 return 0;
1114
1115 io_flush(NORMAL_FLUSH);
1116 stats.total_written += (len+4);
1117 mplex_write(code, buf, len);
1118 return 1;
1119}
1120
1121/** Stop output multiplexing. */
1122void io_multiplexing_close(void)
1123{
1124 io_multiplexing_out = 0;
1125}
1126
1127void start_write_batch(int fd)
1128{
1129 /* Some communication has already taken place, but we don't
1130 * enable batch writing until here so that we can write a
1131 * canonical record of the communication even though the
1132 * actual communication so far depends on whether a daemon
1133 * is involved. */
1134 write_int(batch_fd, protocol_version);
1135 write_int(batch_fd, checksum_seed);
1136
1137 if (am_sender)
1138 write_batch_monitor_out = fd;
1139 else
1140 write_batch_monitor_in = fd;
1141}
1142
1143void stop_write_batch(void)
1144{
1145 write_batch_monitor_out = -1;
1146 write_batch_monitor_in = -1;
1147}