If we update the contents of a symlink and --remove-sent-files
[rsync/rsync.git] / io.c
... / ...
CommitLineData
1/* -*- c-file-style: "linux" -*-
2 *
3 * Copyright (C) 1996-2001 by Andrew Tridgell
4 * Copyright (C) Paul Mackerras 1996
5 * Copyright (C) 2001, 2002 by Martin Pool <mbp@samba.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22/**
23 * @file io.c
24 *
25 * Socket and pipe I/O utilities used in rsync.
26 *
27 * rsync provides its own multiplexing system, which is used to send
28 * stderr and stdout over a single socket. We need this because
29 * stdout normally carries the binary data stream, and stderr all our
30 * error messages.
31 *
32 * For historical reasons this is off during the start of the
33 * connection, but it's switched on quite early using
34 * io_start_multiplex_out() and io_start_multiplex_in().
35 **/
36
37#include "rsync.h"
38
39/** If no timeout is specified then use a 60 second select timeout */
40#define SELECT_TIMEOUT 60
41
42extern int bwlimit;
43extern size_t bwlimit_writemax;
44extern int verbose;
45extern int io_timeout;
46extern int am_server;
47extern int am_daemon;
48extern int am_sender;
49extern int am_generator;
50extern int eol_nulls;
51extern int csum_length;
52extern int checksum_seed;
53extern int protocol_version;
54extern char *remote_filesfrom_file;
55extern struct stats stats;
56
57const char phase_unknown[] = "unknown";
58int select_timeout = SELECT_TIMEOUT;
59int batch_fd = -1;
60int batch_gen_fd = -1;
61
62/**
63 * The connection might be dropped at some point; perhaps because the
64 * remote instance crashed. Just giving the offset on the stream is
65 * not very helpful. So instead we try to make io_phase_name point to
66 * something useful.
67 *
68 * For buffered/multiplexed I/O these names will be somewhat
69 * approximate; perhaps for ease of support we would rather make the
70 * buffer always flush when a single application-level I/O finishes.
71 *
72 * @todo Perhaps we want some simple stack functionality, but there's
73 * no need to overdo it.
74 **/
75const char *io_write_phase = phase_unknown;
76const char *io_read_phase = phase_unknown;
77
78/** Ignore EOF errors while reading a module listing if the remote
79 version is 24 or less. */
80int kludge_around_eof = False;
81
82int msg_fd_in = -1;
83int msg_fd_out = -1;
84
85static int io_multiplexing_out;
86static int io_multiplexing_in;
87static int sock_f_in = -1;
88static int sock_f_out = -1;
89static time_t last_io;
90static int no_flush;
91
92static int write_batch_monitor_in = -1;
93static int write_batch_monitor_out = -1;
94
95static int io_filesfrom_f_in = -1;
96static int io_filesfrom_f_out = -1;
97static char io_filesfrom_buf[2048];
98static char *io_filesfrom_bp;
99static char io_filesfrom_lastchar;
100static int io_filesfrom_buflen;
101
102static void read_loop(int fd, char *buf, size_t len);
103
104struct redo_list {
105 struct redo_list *next;
106 int num;
107};
108
109static struct redo_list *redo_list_head;
110static struct redo_list *redo_list_tail;
111
112struct msg_list {
113 struct msg_list *next;
114 char *buf;
115 int len;
116};
117
118static struct msg_list *msg_list_head;
119static struct msg_list *msg_list_tail;
120
121static void redo_list_add(int num)
122{
123 struct redo_list *rl;
124
125 if (!(rl = new(struct redo_list)))
126 exit_cleanup(RERR_MALLOC);
127 rl->next = NULL;
128 rl->num = num;
129 if (redo_list_tail)
130 redo_list_tail->next = rl;
131 else
132 redo_list_head = rl;
133 redo_list_tail = rl;
134}
135
136static void check_timeout(void)
137{
138 time_t t;
139
140 if (!io_timeout)
141 return;
142
143 if (!last_io) {
144 last_io = time(NULL);
145 return;
146 }
147
148 t = time(NULL);
149
150 if (t - last_io >= io_timeout) {
151 if (!am_server && !am_daemon) {
152 rprintf(FERROR, "io timeout after %d seconds -- exiting\n",
153 (int)(t-last_io));
154 }
155 exit_cleanup(RERR_TIMEOUT);
156 }
157}
158
159/* Note the fds used for the main socket (which might really be a pipe
160 * for a local transfer, but we can ignore that). */
161void io_set_sock_fds(int f_in, int f_out)
162{
163 sock_f_in = f_in;
164 sock_f_out = f_out;
165}
166
167/* Setup the fd used to receive MSG_* messages. Only needed during the
168 * early stages of being a local sender (up through the sending of the
169 * file list) or when we're the generator (to fetch the messages from
170 * the receiver). */
171void set_msg_fd_in(int fd)
172{
173 msg_fd_in = fd;
174}
175
176/* Setup the fd used to send our MSG_* messages. Only needed when
177 * we're the receiver (to send our messages to the generator). */
178void set_msg_fd_out(int fd)
179{
180 msg_fd_out = fd;
181 set_nonblocking(msg_fd_out);
182}
183
184/* Add a message to the pending MSG_* list. */
185static void msg_list_add(int code, char *buf, int len)
186{
187 struct msg_list *ml;
188
189 if (!(ml = new(struct msg_list)))
190 exit_cleanup(RERR_MALLOC);
191 ml->next = NULL;
192 if (!(ml->buf = new_array(char, len+4)))
193 exit_cleanup(RERR_MALLOC);
194 SIVAL(ml->buf, 0, ((code+MPLEX_BASE)<<24) | len);
195 memcpy(ml->buf+4, buf, len);
196 ml->len = len+4;
197 if (msg_list_tail)
198 msg_list_tail->next = ml;
199 else
200 msg_list_head = ml;
201 msg_list_tail = ml;
202}
203
204void send_msg(enum msgcode code, char *buf, int len)
205{
206 if (msg_fd_out < 0) {
207 io_multiplex_write(code, buf, len);
208 return;
209 }
210 msg_list_add(code, buf, len);
211 msg_list_push(NORMAL_FLUSH);
212}
213
214/* Read a message from the MSG_* fd and handle it. This is called either
215 * during the early stages of being a local sender (up through the sending
216 * of the file list) or when we're the generator (to fetch the messages
217 * from the receiver). */
218static void read_msg_fd(void)
219{
220 char buf[2048];
221 size_t n;
222 int fd = msg_fd_in;
223 int tag, len;
224
225 /* Temporarily disable msg_fd_in. This is needed to avoid looping back
226 * to this routine from read_timeout() and writefd_unbuffered(). */
227 msg_fd_in = -1;
228
229 read_loop(fd, buf, 4);
230 tag = IVAL(buf, 0);
231
232 len = tag & 0xFFFFFF;
233 tag = (tag >> 24) - MPLEX_BASE;
234
235 switch (tag) {
236 case MSG_DONE:
237 if (len != 0 || !am_generator) {
238 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
239 exit_cleanup(RERR_STREAMIO);
240 }
241 redo_list_add(-1);
242 break;
243 case MSG_REDO:
244 if (len != 4 || !am_generator) {
245 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
246 exit_cleanup(RERR_STREAMIO);
247 }
248 read_loop(fd, buf, 4);
249 redo_list_add(IVAL(buf,0));
250 break;
251 case MSG_DELETED:
252 if (len >= (int)sizeof buf || !am_generator) {
253 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
254 exit_cleanup(RERR_STREAMIO);
255 }
256 read_loop(fd, buf, len);
257 io_multiplex_write(MSG_DELETED, buf, len);
258 break;
259 case MSG_INFO:
260 case MSG_ERROR:
261 case MSG_LOG:
262 while (len) {
263 n = len;
264 if (n >= sizeof buf)
265 n = sizeof buf - 1;
266 read_loop(fd, buf, n);
267 rwrite((enum logcode)tag, buf, n);
268 len -= n;
269 }
270 break;
271 default:
272 rprintf(FERROR, "unknown message %d:%d\n", tag, len);
273 exit_cleanup(RERR_STREAMIO);
274 }
275
276 msg_fd_in = fd;
277}
278
279/* Try to push messages off the list onto the wire. If we leave with more
280 * to do, return 0. On error, return -1. If everything flushed, return 1.
281 * This is only active in the receiver. */
282int msg_list_push(int flush_it_all)
283{
284 static int written = 0;
285 struct timeval tv;
286 fd_set fds;
287
288 if (msg_fd_out < 0)
289 return -1;
290
291 while (msg_list_head) {
292 struct msg_list *ml = msg_list_head;
293 int n = write(msg_fd_out, ml->buf + written, ml->len - written);
294 if (n < 0) {
295 if (errno == EINTR)
296 continue;
297 if (errno != EWOULDBLOCK && errno != EAGAIN)
298 return -1;
299 if (!flush_it_all)
300 return 0;
301 FD_ZERO(&fds);
302 FD_SET(msg_fd_out, &fds);
303 tv.tv_sec = select_timeout;
304 tv.tv_usec = 0;
305 if (!select(msg_fd_out+1, NULL, &fds, NULL, &tv))
306 check_timeout();
307 } else if ((written += n) == ml->len) {
308 free(ml->buf);
309 msg_list_head = ml->next;
310 if (!msg_list_head)
311 msg_list_tail = NULL;
312 free(ml);
313 written = 0;
314 }
315 }
316 return 1;
317}
318
319int get_redo_num(void)
320{
321 struct redo_list *next;
322 int num;
323
324 while (!redo_list_head)
325 read_msg_fd();
326
327 num = redo_list_head->num;
328 next = redo_list_head->next;
329 free(redo_list_head);
330 redo_list_head = next;
331 if (!next)
332 redo_list_tail = NULL;
333
334 return num;
335}
336
337/**
338 * When we're the receiver and we have a local --files-from list of names
339 * that needs to be sent over the socket to the sender, we have to do two
340 * things at the same time: send the sender a list of what files we're
341 * processing and read the incoming file+info list from the sender. We do
342 * this by augmenting the read_timeout() function to copy this data. It
343 * uses the io_filesfrom_buf to read a block of data from f_in (when it is
344 * ready, since it might be a pipe) and then blast it out f_out (when it
345 * is ready to receive more data).
346 */
347void io_set_filesfrom_fds(int f_in, int f_out)
348{
349 io_filesfrom_f_in = f_in;
350 io_filesfrom_f_out = f_out;
351 io_filesfrom_bp = io_filesfrom_buf;
352 io_filesfrom_lastchar = '\0';
353 io_filesfrom_buflen = 0;
354}
355
356/**
357 * It's almost always an error to get an EOF when we're trying to read
358 * from the network, because the protocol is self-terminating.
359 *
360 * However, there is one unfortunate cases where it is not, which is
361 * rsync <2.4.6 sending a list of modules on a server, since the list
362 * is terminated by closing the socket. So, for the section of the
363 * program where that is a problem (start_socket_client),
364 * kludge_around_eof is True and we just exit.
365 */
366static void whine_about_eof(int fd)
367{
368 if (kludge_around_eof && fd == sock_f_in)
369 exit_cleanup(0);
370
371 rprintf(FERROR, RSYNC_NAME ": connection unexpectedly closed "
372 "(%.0f bytes received so far) [%s]\n",
373 (double)stats.total_read, who_am_i());
374
375 exit_cleanup(RERR_STREAMIO);
376}
377
378
379/**
380 * Read from a socket with I/O timeout. return the number of bytes
381 * read. If no bytes can be read then exit, never return a number <= 0.
382 *
383 * TODO: If the remote shell connection fails, then current versions
384 * actually report an "unexpected EOF" error here. Since it's a
385 * fairly common mistake to try to use rsh when ssh is required, we
386 * should trap that: if we fail to read any data at all, we should
387 * give a better explanation. We can tell whether the connection has
388 * started by looking e.g. at whether the remote version is known yet.
389 */
390static int read_timeout(int fd, char *buf, size_t len)
391{
392 int n, ret = 0;
393
394 io_flush(NORMAL_FLUSH);
395
396 while (ret == 0) {
397 /* until we manage to read *something* */
398 fd_set r_fds, w_fds;
399 struct timeval tv;
400 int maxfd = fd;
401 int count;
402
403 FD_ZERO(&r_fds);
404 FD_ZERO(&w_fds);
405 FD_SET(fd, &r_fds);
406 if (msg_fd_in >= 0) {
407 FD_SET(msg_fd_in, &r_fds);
408 if (msg_fd_in > maxfd)
409 maxfd = msg_fd_in;
410 } else if (msg_list_head) {
411 FD_SET(msg_fd_out, &w_fds);
412 if (msg_fd_out > maxfd)
413 maxfd = msg_fd_out;
414 }
415 if (io_filesfrom_f_out >= 0) {
416 int new_fd;
417 if (io_filesfrom_buflen == 0) {
418 if (io_filesfrom_f_in >= 0) {
419 FD_SET(io_filesfrom_f_in, &r_fds);
420 new_fd = io_filesfrom_f_in;
421 } else {
422 io_filesfrom_f_out = -1;
423 new_fd = -1;
424 }
425 } else {
426 FD_SET(io_filesfrom_f_out, &w_fds);
427 new_fd = io_filesfrom_f_out;
428 }
429 if (new_fd > maxfd)
430 maxfd = new_fd;
431 }
432
433 tv.tv_sec = select_timeout;
434 tv.tv_usec = 0;
435
436 errno = 0;
437
438 count = select(maxfd + 1, &r_fds, &w_fds, NULL, &tv);
439
440 if (count <= 0) {
441 if (errno == EBADF)
442 exit_cleanup(RERR_SOCKETIO);
443 check_timeout();
444 continue;
445 }
446
447 if (msg_fd_in >= 0 && FD_ISSET(msg_fd_in, &r_fds))
448 read_msg_fd();
449 else if (msg_list_head && FD_ISSET(msg_fd_out, &w_fds))
450 msg_list_push(NORMAL_FLUSH);
451
452 if (io_filesfrom_f_out >= 0) {
453 if (io_filesfrom_buflen) {
454 if (FD_ISSET(io_filesfrom_f_out, &w_fds)) {
455 int l = write(io_filesfrom_f_out,
456 io_filesfrom_bp,
457 io_filesfrom_buflen);
458 if (l > 0) {
459 if (!(io_filesfrom_buflen -= l))
460 io_filesfrom_bp = io_filesfrom_buf;
461 else
462 io_filesfrom_bp += l;
463 } else {
464 /* XXX should we complain? */
465 io_filesfrom_f_out = -1;
466 }
467 }
468 } else if (io_filesfrom_f_in >= 0) {
469 if (FD_ISSET(io_filesfrom_f_in, &r_fds)) {
470 int l = read(io_filesfrom_f_in,
471 io_filesfrom_buf,
472 sizeof io_filesfrom_buf);
473 if (l <= 0) {
474 /* Send end-of-file marker */
475 io_filesfrom_buf[0] = '\0';
476 io_filesfrom_buf[1] = '\0';
477 io_filesfrom_buflen = io_filesfrom_lastchar? 2 : 1;
478 io_filesfrom_f_in = -1;
479 } else {
480 if (!eol_nulls) {
481 char *s = io_filesfrom_buf + l;
482 /* Transform CR and/or LF into '\0' */
483 while (s-- > io_filesfrom_buf) {
484 if (*s == '\n' || *s == '\r')
485 *s = '\0';
486 }
487 }
488 if (!io_filesfrom_lastchar) {
489 /* Last buf ended with a '\0', so don't
490 * let this buf start with one. */
491 while (l && !*io_filesfrom_bp)
492 io_filesfrom_bp++, l--;
493 }
494 if (!l)
495 io_filesfrom_bp = io_filesfrom_buf;
496 else {
497 char *f = io_filesfrom_bp;
498 char *t = f;
499 char *eob = f + l;
500 /* Eliminate any multi-'\0' runs. */
501 while (f != eob) {
502 if (!(*t++ = *f++)) {
503 while (f != eob && !*f)
504 f++, l--;
505 }
506 }
507 io_filesfrom_lastchar = f[-1];
508 }
509 io_filesfrom_buflen = l;
510 }
511 }
512 }
513 }
514
515 if (!FD_ISSET(fd, &r_fds))
516 continue;
517
518 n = read(fd, buf, len);
519
520 if (n <= 0) {
521 if (n == 0)
522 whine_about_eof(fd); /* Doesn't return. */
523 if (errno == EINTR || errno == EWOULDBLOCK
524 || errno == EAGAIN)
525 continue;
526
527 /* Don't write errors on a dead socket. */
528 if (fd == sock_f_in)
529 close_multiplexing_out();
530 rsyserr(FERROR, errno, "read error");
531 exit_cleanup(RERR_STREAMIO);
532 }
533
534 buf += n;
535 len -= n;
536 ret += n;
537
538 if (io_timeout && fd == sock_f_in)
539 last_io = time(NULL);
540 }
541
542 return ret;
543}
544
545/**
546 * Read a line into the "fname" buffer (which must be at least MAXPATHLEN
547 * characters long).
548 */
549int read_filesfrom_line(int fd, char *fname)
550{
551 char ch, *s, *eob = fname + MAXPATHLEN - 1;
552 int cnt;
553 int reading_remotely = remote_filesfrom_file != NULL;
554 int nulls = eol_nulls || reading_remotely;
555
556 start:
557 s = fname;
558 while (1) {
559 cnt = read(fd, &ch, 1);
560 if (cnt < 0 && (errno == EWOULDBLOCK
561 || errno == EINTR || errno == EAGAIN)) {
562 struct timeval tv;
563 fd_set fds;
564 FD_ZERO(&fds);
565 FD_SET(fd, &fds);
566 tv.tv_sec = select_timeout;
567 tv.tv_usec = 0;
568 if (!select(fd+1, &fds, NULL, NULL, &tv))
569 check_timeout();
570 continue;
571 }
572 if (cnt != 1)
573 break;
574 if (nulls? !ch : (ch == '\r' || ch == '\n')) {
575 /* Skip empty lines if reading locally. */
576 if (!reading_remotely && s == fname)
577 continue;
578 break;
579 }
580 if (s < eob)
581 *s++ = ch;
582 }
583 *s = '\0';
584
585 /* Dump comments. */
586 if (*fname == '#' || *fname == ';')
587 goto start;
588
589 return s - fname;
590}
591
592
593static char *iobuf_out;
594static int iobuf_out_cnt;
595
596void io_start_buffering_out(void)
597{
598 if (iobuf_out)
599 return;
600 if (!(iobuf_out = new_array(char, IO_BUFFER_SIZE)))
601 out_of_memory("io_start_buffering_out");
602 iobuf_out_cnt = 0;
603}
604
605
606static char *iobuf_in;
607static size_t iobuf_in_siz;
608
609void io_start_buffering_in(void)
610{
611 if (iobuf_in)
612 return;
613 iobuf_in_siz = 2 * IO_BUFFER_SIZE;
614 if (!(iobuf_in = new_array(char, iobuf_in_siz)))
615 out_of_memory("io_start_buffering_in");
616}
617
618
619void io_end_buffering(void)
620{
621 io_flush(NORMAL_FLUSH);
622 if (!io_multiplexing_out) {
623 free(iobuf_out);
624 iobuf_out = NULL;
625 }
626}
627
628
629/**
630 * Continue trying to read len bytes - don't return until len has been
631 * read.
632 **/
633static void read_loop(int fd, char *buf, size_t len)
634{
635 while (len) {
636 int n = read_timeout(fd, buf, len);
637
638 buf += n;
639 len -= n;
640 }
641}
642
643
644/**
645 * Read from the file descriptor handling multiplexing - return number
646 * of bytes read.
647 *
648 * Never returns <= 0.
649 */
650static int readfd_unbuffered(int fd, char *buf, size_t len)
651{
652 static size_t remaining;
653 static size_t iobuf_in_ndx;
654 int tag, ret = 0;
655 char line[MAXPATHLEN+1];
656
657 if (!iobuf_in || fd != sock_f_in)
658 return read_timeout(fd, buf, len);
659
660 if (!io_multiplexing_in && remaining == 0) {
661 remaining = read_timeout(fd, iobuf_in, iobuf_in_siz);
662 iobuf_in_ndx = 0;
663 }
664
665 while (ret == 0) {
666 if (remaining) {
667 len = MIN(len, remaining);
668 memcpy(buf, iobuf_in + iobuf_in_ndx, len);
669 iobuf_in_ndx += len;
670 remaining -= len;
671 ret = len;
672 break;
673 }
674
675 read_loop(fd, line, 4);
676 tag = IVAL(line, 0);
677
678 remaining = tag & 0xFFFFFF;
679 tag = (tag >> 24) - MPLEX_BASE;
680
681 switch (tag) {
682 case MSG_DATA:
683 if (remaining > iobuf_in_siz) {
684 if (!(iobuf_in = realloc_array(iobuf_in, char,
685 remaining)))
686 out_of_memory("readfd_unbuffered");
687 iobuf_in_siz = remaining;
688 }
689 read_loop(fd, iobuf_in, remaining);
690 iobuf_in_ndx = 0;
691 break;
692 case MSG_DELETED:
693 if (remaining >= sizeof line) {
694 rprintf(FERROR, "invalid multi-message %d:%ld\n",
695 tag, (long)remaining);
696 exit_cleanup(RERR_STREAMIO);
697 }
698 read_loop(fd, line, remaining);
699 line[remaining] = '\0';
700 /* A directory name was sent with the trailing null */
701 if (remaining > 0 && !line[remaining-1])
702 log_delete(line, S_IFDIR);
703 else
704 log_delete(line, S_IFREG);
705 remaining = 0;
706 break;
707 case MSG_INFO:
708 case MSG_ERROR:
709 if (remaining >= sizeof line) {
710 rprintf(FERROR,
711 "[%s] multiplexing overflow %d:%ld\n\n",
712 who_am_i(), tag, (long)remaining);
713 exit_cleanup(RERR_STREAMIO);
714 }
715 read_loop(fd, line, remaining);
716 rwrite((enum logcode)tag, line, remaining);
717 remaining = 0;
718 break;
719 default:
720 rprintf(FERROR, "[%s] unexpected tag %d\n",
721 who_am_i(), tag);
722 exit_cleanup(RERR_STREAMIO);
723 }
724 }
725
726 if (remaining == 0)
727 io_flush(NORMAL_FLUSH);
728
729 return ret;
730}
731
732
733
734/**
735 * Do a buffered read from @p fd. Don't return until all @p n bytes
736 * have been read. If all @p n can't be read then exit with an
737 * error.
738 **/
739static void readfd(int fd, char *buffer, size_t N)
740{
741 int ret;
742 size_t total = 0;
743
744 while (total < N) {
745 ret = readfd_unbuffered(fd, buffer + total, N-total);
746 total += ret;
747 }
748
749 if (fd == write_batch_monitor_in) {
750 if ((size_t)write(batch_fd, buffer, total) != total)
751 exit_cleanup(RERR_FILEIO);
752 }
753
754 if (fd == sock_f_in)
755 stats.total_read += total;
756}
757
758
759int read_shortint(int f)
760{
761 uchar b[2];
762 readfd(f, (char *)b, 2);
763 return (b[1] << 8) + b[0];
764}
765
766
767int32 read_int(int f)
768{
769 char b[4];
770 int32 ret;
771
772 readfd(f,b,4);
773 ret = IVAL(b,0);
774 if (ret == (int32)0xffffffff)
775 return -1;
776 return ret;
777}
778
779int64 read_longint(int f)
780{
781 int64 ret;
782 char b[8];
783 ret = read_int(f);
784
785 if ((int32)ret != (int32)0xffffffff)
786 return ret;
787
788#if SIZEOF_INT64 < 8
789 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
790 exit_cleanup(RERR_UNSUPPORTED);
791#else
792 readfd(f,b,8);
793 ret = IVAL(b,0) | (((int64)IVAL(b,4))<<32);
794#endif
795
796 return ret;
797}
798
799void read_buf(int f,char *buf,size_t len)
800{
801 readfd(f,buf,len);
802}
803
804void read_sbuf(int f,char *buf,size_t len)
805{
806 readfd(f, buf, len);
807 buf[len] = 0;
808}
809
810uchar read_byte(int f)
811{
812 uchar c;
813 readfd(f, (char *)&c, 1);
814 return c;
815}
816
817/* Populate a sum_struct with values from the socket. This is
818 * called by both the sender and the receiver. */
819void read_sum_head(int f, struct sum_struct *sum)
820{
821 sum->count = read_int(f);
822 sum->blength = read_int(f);
823 if (sum->blength < 0 || sum->blength > MAX_BLOCK_SIZE) {
824 rprintf(FERROR, "[%s] Invalid block length %ld\n",
825 who_am_i(), (long)sum->blength);
826 exit_cleanup(RERR_PROTOCOL);
827 }
828 sum->s2length = protocol_version < 27 ? csum_length : (int)read_int(f);
829 if (sum->s2length < 0 || sum->s2length > MD4_SUM_LENGTH) {
830 rprintf(FERROR, "[%s] Invalid checksum length %d\n",
831 who_am_i(), sum->s2length);
832 exit_cleanup(RERR_PROTOCOL);
833 }
834 sum->remainder = read_int(f);
835 if (sum->remainder < 0 || sum->remainder > sum->blength) {
836 rprintf(FERROR, "[%s] Invalid remainder length %ld\n",
837 who_am_i(), (long)sum->remainder);
838 exit_cleanup(RERR_PROTOCOL);
839 }
840}
841
842/* Send the values from a sum_struct over the socket. Set sum to
843 * NULL if there are no checksums to send. This is called by both
844 * the generator and the sender. */
845void write_sum_head(int f, struct sum_struct *sum)
846{
847 static struct sum_struct null_sum;
848
849 if (sum == NULL)
850 sum = &null_sum;
851
852 write_int(f, sum->count);
853 write_int(f, sum->blength);
854 if (protocol_version >= 27)
855 write_int(f, sum->s2length);
856 write_int(f, sum->remainder);
857}
858
859
860/**
861 * Sleep after writing to limit I/O bandwidth usage.
862 *
863 * @todo Rather than sleeping after each write, it might be better to
864 * use some kind of averaging. The current algorithm seems to always
865 * use a bit less bandwidth than specified, because it doesn't make up
866 * for slow periods. But arguably this is a feature. In addition, we
867 * ought to take the time used to write the data into account.
868 *
869 * During some phases of big transfers (file FOO is uptodate) this is
870 * called with a small bytes_written every time. As the kernel has to
871 * round small waits up to guarantee that we actually wait at least the
872 * requested number of microseconds, this can become grossly inaccurate.
873 * We therefore keep track of the bytes we've written over time and only
874 * sleep when the accumulated delay is at least 1 tenth of a second.
875 **/
876static void sleep_for_bwlimit(int bytes_written)
877{
878 static struct timeval prior_tv;
879 static long total_written = 0;
880 struct timeval tv, start_tv;
881 long elapsed_usec, sleep_usec;
882
883#define ONE_SEC 1000000L /* # of microseconds in a second */
884
885 if (!bwlimit)
886 return;
887
888 total_written += bytes_written;
889
890 gettimeofday(&start_tv, NULL);
891 if (prior_tv.tv_sec) {
892 elapsed_usec = (start_tv.tv_sec - prior_tv.tv_sec) * ONE_SEC
893 + (start_tv.tv_usec - prior_tv.tv_usec);
894 total_written -= elapsed_usec * bwlimit / (ONE_SEC/1024);
895 if (total_written < 0)
896 total_written = 0;
897 }
898
899 sleep_usec = total_written * (ONE_SEC/1024) / bwlimit;
900 if (sleep_usec < ONE_SEC / 10) {
901 prior_tv = start_tv;
902 return;
903 }
904
905 tv.tv_sec = sleep_usec / ONE_SEC;
906 tv.tv_usec = sleep_usec % ONE_SEC;
907 select(0, NULL, NULL, NULL, &tv);
908
909 gettimeofday(&prior_tv, NULL);
910 elapsed_usec = (prior_tv.tv_sec - start_tv.tv_sec) * ONE_SEC
911 + (prior_tv.tv_usec - start_tv.tv_usec);
912 total_written = (sleep_usec - elapsed_usec) * bwlimit / (ONE_SEC/1024);
913}
914
915
916/* Write len bytes to the file descriptor fd, looping as necessary to get
917 * the job done and also (in the generator) reading any data on msg_fd_in
918 * (to avoid deadlock).
919 *
920 * This function underlies the multiplexing system. The body of the
921 * application never calls this function directly. */
922static void writefd_unbuffered(int fd,char *buf,size_t len)
923{
924 size_t n, total = 0;
925 fd_set w_fds, r_fds;
926 int maxfd, count, ret;
927 struct timeval tv;
928
929 no_flush++;
930
931 while (total < len) {
932 FD_ZERO(&w_fds);
933 FD_SET(fd,&w_fds);
934 maxfd = fd;
935
936 if (msg_fd_in >= 0) {
937 FD_ZERO(&r_fds);
938 FD_SET(msg_fd_in,&r_fds);
939 if (msg_fd_in > maxfd)
940 maxfd = msg_fd_in;
941 }
942 if (fd != sock_f_out && iobuf_out_cnt && no_flush == 1) {
943 FD_SET(sock_f_out, &w_fds);
944 if (sock_f_out > maxfd)
945 maxfd = sock_f_out;
946 }
947
948 tv.tv_sec = select_timeout;
949 tv.tv_usec = 0;
950
951 errno = 0;
952 count = select(maxfd + 1, msg_fd_in >= 0 ? &r_fds : NULL,
953 &w_fds, NULL, &tv);
954
955 if (count <= 0) {
956 if (count < 0 && errno == EBADF)
957 exit_cleanup(RERR_SOCKETIO);
958 check_timeout();
959 continue;
960 }
961
962 if (msg_fd_in >= 0 && FD_ISSET(msg_fd_in, &r_fds))
963 read_msg_fd();
964
965 if (!FD_ISSET(fd, &w_fds)) {
966 if (fd != sock_f_out && iobuf_out_cnt) {
967 no_flush--;
968 io_flush(NORMAL_FLUSH);
969 no_flush++;
970 }
971 continue;
972 }
973
974 n = len - total;
975 if (bwlimit && n > bwlimit_writemax)
976 n = bwlimit_writemax;
977 ret = write(fd, buf + total, n);
978
979 if (ret <= 0) {
980 if (ret < 0) {
981 if (errno == EINTR)
982 continue;
983 if (errno == EWOULDBLOCK || errno == EAGAIN) {
984 msleep(1);
985 continue;
986 }
987 }
988
989 /* Don't try to write errors back across the stream. */
990 if (fd == sock_f_out)
991 close_multiplexing_out();
992 rsyserr(FERROR, errno,
993 "writefd_unbuffered failed to write %ld bytes: phase \"%s\" [%s]",
994 (long)len, io_write_phase, who_am_i());
995 /* If the other side is sending us error messages, try
996 * to grab any messages they sent before they died. */
997 while (fd == sock_f_out && io_multiplexing_in) {
998 io_timeout = select_timeout = 30;
999 readfd_unbuffered(sock_f_in, io_filesfrom_buf,
1000 sizeof io_filesfrom_buf);
1001 }
1002 exit_cleanup(RERR_STREAMIO);
1003 }
1004
1005 total += ret;
1006
1007 if (fd == sock_f_out) {
1008 if (io_timeout)
1009 last_io = time(NULL);
1010 sleep_for_bwlimit(ret);
1011 }
1012 }
1013
1014 no_flush--;
1015}
1016
1017
1018/**
1019 * Write an message to a multiplexed stream. If this fails then rsync
1020 * exits.
1021 **/
1022static void mplex_write(enum msgcode code, char *buf, size_t len)
1023{
1024 char buffer[4096];
1025 size_t n = len;
1026
1027 SIVAL(buffer, 0, ((MPLEX_BASE + (int)code)<<24) + len);
1028
1029 if (n > sizeof buffer - 4)
1030 n = sizeof buffer - 4;
1031
1032 memcpy(&buffer[4], buf, n);
1033 writefd_unbuffered(sock_f_out, buffer, n+4);
1034
1035 len -= n;
1036 buf += n;
1037
1038 if (len)
1039 writefd_unbuffered(sock_f_out, buf, len);
1040}
1041
1042
1043void io_flush(int flush_it_all)
1044{
1045 msg_list_push(flush_it_all);
1046
1047 if (!iobuf_out_cnt || no_flush)
1048 return;
1049
1050 if (io_multiplexing_out)
1051 mplex_write(MSG_DATA, iobuf_out, iobuf_out_cnt);
1052 else
1053 writefd_unbuffered(sock_f_out, iobuf_out, iobuf_out_cnt);
1054 iobuf_out_cnt = 0;
1055}
1056
1057
1058static void writefd(int fd,char *buf,size_t len)
1059{
1060 if (fd == msg_fd_out) {
1061 rprintf(FERROR, "Internal error: wrong write used in receiver.\n");
1062 exit_cleanup(RERR_PROTOCOL);
1063 }
1064
1065 if (fd == sock_f_out)
1066 stats.total_written += len;
1067
1068 if (fd == write_batch_monitor_out) {
1069 if ((size_t)write(batch_fd, buf, len) != len)
1070 exit_cleanup(RERR_FILEIO);
1071 }
1072
1073 if (!iobuf_out || fd != sock_f_out) {
1074 writefd_unbuffered(fd, buf, len);
1075 return;
1076 }
1077
1078 while (len) {
1079 int n = MIN((int)len, IO_BUFFER_SIZE - iobuf_out_cnt);
1080 if (n > 0) {
1081 memcpy(iobuf_out+iobuf_out_cnt, buf, n);
1082 buf += n;
1083 len -= n;
1084 iobuf_out_cnt += n;
1085 }
1086
1087 if (iobuf_out_cnt == IO_BUFFER_SIZE)
1088 io_flush(NORMAL_FLUSH);
1089 }
1090}
1091
1092
1093void write_shortint(int f, int x)
1094{
1095 uchar b[2];
1096 b[0] = x;
1097 b[1] = x >> 8;
1098 writefd(f, (char *)b, 2);
1099}
1100
1101
1102void write_int(int f,int32 x)
1103{
1104 char b[4];
1105 SIVAL(b,0,x);
1106 writefd(f,b,4);
1107}
1108
1109
1110void write_int_named(int f, int32 x, const char *phase)
1111{
1112 io_write_phase = phase;
1113 write_int(f, x);
1114 io_write_phase = phase_unknown;
1115}
1116
1117
1118/*
1119 * Note: int64 may actually be a 32-bit type if ./configure couldn't find any
1120 * 64-bit types on this platform.
1121 */
1122void write_longint(int f, int64 x)
1123{
1124 char b[8];
1125
1126 if (x <= 0x7FFFFFFF) {
1127 write_int(f, (int)x);
1128 return;
1129 }
1130
1131#if SIZEOF_INT64 < 8
1132 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
1133 exit_cleanup(RERR_UNSUPPORTED);
1134#else
1135 write_int(f, (int32)0xFFFFFFFF);
1136 SIVAL(b,0,(x&0xFFFFFFFF));
1137 SIVAL(b,4,((x>>32)&0xFFFFFFFF));
1138
1139 writefd(f,b,8);
1140#endif
1141}
1142
1143void write_buf(int f,char *buf,size_t len)
1144{
1145 writefd(f,buf,len);
1146}
1147
1148
1149/** Write a string to the connection */
1150void write_sbuf(int f, char *buf)
1151{
1152 writefd(f, buf, strlen(buf));
1153}
1154
1155
1156void write_byte(int f, uchar c)
1157{
1158 writefd(f, (char *)&c, 1);
1159}
1160
1161
1162/**
1163 * Read a line of up to @p maxlen characters into @p buf (not counting
1164 * the trailing null). Strips the (required) trailing newline and all
1165 * carriage returns.
1166 *
1167 * @return 1 for success; 0 for I/O error or truncation.
1168 **/
1169int read_line(int f, char *buf, size_t maxlen)
1170{
1171 while (maxlen) {
1172 buf[0] = 0;
1173 read_buf(f, buf, 1);
1174 if (buf[0] == 0)
1175 return 0;
1176 if (buf[0] == '\n')
1177 break;
1178 if (buf[0] != '\r') {
1179 buf++;
1180 maxlen--;
1181 }
1182 }
1183 *buf = '\0';
1184 return maxlen > 0;
1185}
1186
1187
1188void io_printf(int fd, const char *format, ...)
1189{
1190 va_list ap;
1191 char buf[1024];
1192 int len;
1193
1194 va_start(ap, format);
1195 len = vsnprintf(buf, sizeof buf, format, ap);
1196 va_end(ap);
1197
1198 if (len < 0)
1199 exit_cleanup(RERR_STREAMIO);
1200
1201 write_sbuf(fd, buf);
1202}
1203
1204
1205/** Setup for multiplexing a MSG_* stream with the data stream. */
1206void io_start_multiplex_out(void)
1207{
1208 io_flush(NORMAL_FLUSH);
1209 io_start_buffering_out();
1210 io_multiplexing_out = 1;
1211}
1212
1213/** Setup for multiplexing a MSG_* stream with the data stream. */
1214void io_start_multiplex_in(void)
1215{
1216 io_flush(NORMAL_FLUSH);
1217 io_start_buffering_in();
1218 io_multiplexing_in = 1;
1219}
1220
1221/** Write an message to the multiplexed data stream. */
1222int io_multiplex_write(enum msgcode code, char *buf, size_t len)
1223{
1224 if (!io_multiplexing_out)
1225 return 0;
1226
1227 io_flush(NORMAL_FLUSH);
1228 stats.total_written += (len+4);
1229 mplex_write(code, buf, len);
1230 return 1;
1231}
1232
1233void close_multiplexing_in(void)
1234{
1235 io_multiplexing_in = 0;
1236}
1237
1238/** Stop output multiplexing. */
1239void close_multiplexing_out(void)
1240{
1241 io_multiplexing_out = 0;
1242}
1243
1244void start_write_batch(int fd)
1245{
1246 write_stream_flags(batch_fd);
1247
1248 /* Some communication has already taken place, but we don't
1249 * enable batch writing until here so that we can write a
1250 * canonical record of the communication even though the
1251 * actual communication so far depends on whether a daemon
1252 * is involved. */
1253 write_int(batch_fd, protocol_version);
1254 write_int(batch_fd, checksum_seed);
1255
1256 if (am_sender)
1257 write_batch_monitor_out = fd;
1258 else
1259 write_batch_monitor_in = fd;
1260}
1261
1262void stop_write_batch(void)
1263{
1264 write_batch_monitor_out = -1;
1265 write_batch_monitor_in = -1;
1266}