In the compatibility comments: mention why we don't use grep -q.
[rsync/rsync.git] / io.c
... / ...
CommitLineData
1/* -*- c-file-style: "linux" -*-
2 *
3 * Copyright (C) 1996-2001 by Andrew Tridgell
4 * Copyright (C) Paul Mackerras 1996
5 * Copyright (C) 2001, 2002 by Martin Pool <mbp@samba.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22/**
23 * @file io.c
24 *
25 * Socket and pipe I/O utilities used in rsync.
26 *
27 * rsync provides its own multiplexing system, which is used to send
28 * stderr and stdout over a single socket. We need this because
29 * stdout normally carries the binary data stream, and stderr all our
30 * error messages.
31 *
32 * For historical reasons this is off during the start of the
33 * connection, but it's switched on quite early using
34 * io_start_multiplex_out() and io_start_multiplex_in().
35 **/
36
37#include "rsync.h"
38
39/** If no timeout is specified then use a 60 second select timeout */
40#define SELECT_TIMEOUT 60
41
42extern int bwlimit;
43extern size_t bwlimit_writemax;
44extern int verbose;
45extern int io_timeout;
46extern int allowed_lull;
47extern int am_server;
48extern int am_daemon;
49extern int am_sender;
50extern int am_generator;
51extern int eol_nulls;
52extern int read_batch;
53extern int csum_length;
54extern int checksum_seed;
55extern int protocol_version;
56extern int remove_sent_files;
57extern int preserve_hard_links;
58extern char *filesfrom_host;
59extern struct stats stats;
60extern struct file_list *the_file_list;
61
62const char phase_unknown[] = "unknown";
63int ignore_timeout = 0;
64int batch_fd = -1;
65int batch_gen_fd = -1;
66
67/**
68 * The connection might be dropped at some point; perhaps because the
69 * remote instance crashed. Just giving the offset on the stream is
70 * not very helpful. So instead we try to make io_phase_name point to
71 * something useful.
72 *
73 * For buffered/multiplexed I/O these names will be somewhat
74 * approximate; perhaps for ease of support we would rather make the
75 * buffer always flush when a single application-level I/O finishes.
76 *
77 * @todo Perhaps we want some simple stack functionality, but there's
78 * no need to overdo it.
79 **/
80const char *io_write_phase = phase_unknown;
81const char *io_read_phase = phase_unknown;
82
83/* Ignore an EOF error if non-zero. See whine_about_eof(). */
84int kluge_around_eof = 0;
85
86int msg_fd_in = -1;
87int msg_fd_out = -1;
88int sock_f_in = -1;
89int sock_f_out = -1;
90
91static int io_multiplexing_out;
92static int io_multiplexing_in;
93static time_t last_io_in;
94static time_t last_io_out;
95static int no_flush;
96
97static int write_batch_monitor_in = -1;
98static int write_batch_monitor_out = -1;
99
100static int io_filesfrom_f_in = -1;
101static int io_filesfrom_f_out = -1;
102static char io_filesfrom_buf[2048];
103static char *io_filesfrom_bp;
104static char io_filesfrom_lastchar;
105static int io_filesfrom_buflen;
106static size_t contiguous_write_len = 0;
107static int select_timeout = SELECT_TIMEOUT;
108
109static void read_loop(int fd, char *buf, size_t len);
110
111struct flist_ndx_item {
112 struct flist_ndx_item *next;
113 int ndx;
114};
115
116struct flist_ndx_list {
117 struct flist_ndx_item *head, *tail;
118};
119
120static struct flist_ndx_list redo_list, hlink_list;
121
122struct msg_list_item {
123 struct msg_list_item *next;
124 char *buf;
125 int len;
126};
127
128struct msg_list {
129 struct msg_list_item *head, *tail;
130};
131
132static struct msg_list msg_list;
133
134static void flist_ndx_push(struct flist_ndx_list *lp, int ndx)
135{
136 struct flist_ndx_item *item;
137
138 if (!(item = new(struct flist_ndx_item)))
139 out_of_memory("flist_ndx_push");
140 item->next = NULL;
141 item->ndx = ndx;
142 if (lp->tail)
143 lp->tail->next = item;
144 else
145 lp->head = item;
146 lp->tail = item;
147}
148
149static int flist_ndx_pop(struct flist_ndx_list *lp)
150{
151 struct flist_ndx_item *next;
152 int ndx;
153
154 if (!lp->head)
155 return -1;
156
157 ndx = lp->head->ndx;
158 next = lp->head->next;
159 free(lp->head);
160 lp->head = next;
161 if (!next)
162 lp->tail = NULL;
163
164 return ndx;
165}
166
167static void check_timeout(void)
168{
169 time_t t;
170
171 if (!io_timeout || ignore_timeout)
172 return;
173
174 if (!last_io_in) {
175 last_io_in = time(NULL);
176 return;
177 }
178
179 t = time(NULL);
180
181 if (t - last_io_in >= io_timeout) {
182 if (!am_server && !am_daemon) {
183 rprintf(FERROR, "io timeout after %d seconds -- exiting\n",
184 (int)(t-last_io_in));
185 }
186 exit_cleanup(RERR_TIMEOUT);
187 }
188}
189
190/* Note the fds used for the main socket (which might really be a pipe
191 * for a local transfer, but we can ignore that). */
192void io_set_sock_fds(int f_in, int f_out)
193{
194 sock_f_in = f_in;
195 sock_f_out = f_out;
196}
197
198void set_io_timeout(int secs)
199{
200 io_timeout = secs;
201
202 if (!io_timeout || io_timeout > SELECT_TIMEOUT)
203 select_timeout = SELECT_TIMEOUT;
204 else
205 select_timeout = io_timeout;
206
207 allowed_lull = read_batch ? 0 : (io_timeout + 1) / 2;
208}
209
210/* Setup the fd used to receive MSG_* messages. Only needed during the
211 * early stages of being a local sender (up through the sending of the
212 * file list) or when we're the generator (to fetch the messages from
213 * the receiver). */
214void set_msg_fd_in(int fd)
215{
216 msg_fd_in = fd;
217}
218
219/* Setup the fd used to send our MSG_* messages. Only needed when
220 * we're the receiver (to send our messages to the generator). */
221void set_msg_fd_out(int fd)
222{
223 msg_fd_out = fd;
224 set_nonblocking(msg_fd_out);
225}
226
227/* Add a message to the pending MSG_* list. */
228static void msg_list_add(int code, char *buf, int len)
229{
230 struct msg_list_item *ml;
231
232 if (!(ml = new(struct msg_list_item)))
233 out_of_memory("msg_list_add");
234 ml->next = NULL;
235 if (!(ml->buf = new_array(char, len+4)))
236 out_of_memory("msg_list_add");
237 SIVAL(ml->buf, 0, ((code+MPLEX_BASE)<<24) | len);
238 memcpy(ml->buf+4, buf, len);
239 ml->len = len+4;
240 if (msg_list.tail)
241 msg_list.tail->next = ml;
242 else
243 msg_list.head = ml;
244 msg_list.tail = ml;
245}
246
247/* Read a message from the MSG_* fd and handle it. This is called either
248 * during the early stages of being a local sender (up through the sending
249 * of the file list) or when we're the generator (to fetch the messages
250 * from the receiver). */
251static void read_msg_fd(void)
252{
253 char buf[2048];
254 size_t n;
255 int fd = msg_fd_in;
256 int tag, len;
257
258 /* Temporarily disable msg_fd_in. This is needed to avoid looping back
259 * to this routine from writefd_unbuffered(). */
260 msg_fd_in = -1;
261
262 read_loop(fd, buf, 4);
263 tag = IVAL(buf, 0);
264
265 len = tag & 0xFFFFFF;
266 tag = (tag >> 24) - MPLEX_BASE;
267
268 switch (tag) {
269 case MSG_DONE:
270 if (len != 0 || !am_generator) {
271 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
272 exit_cleanup(RERR_STREAMIO);
273 }
274 flist_ndx_push(&redo_list, -1);
275 break;
276 case MSG_REDO:
277 if (len != 4 || !am_generator) {
278 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
279 exit_cleanup(RERR_STREAMIO);
280 }
281 read_loop(fd, buf, 4);
282 flist_ndx_push(&redo_list, IVAL(buf,0));
283 break;
284 case MSG_DELETED:
285 if (len >= (int)sizeof buf || !am_generator) {
286 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
287 exit_cleanup(RERR_STREAMIO);
288 }
289 read_loop(fd, buf, len);
290 io_multiplex_write(MSG_DELETED, buf, len);
291 break;
292 case MSG_SUCCESS:
293 if (len != 4 || !am_generator) {
294 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
295 exit_cleanup(RERR_STREAMIO);
296 }
297 read_loop(fd, buf, len);
298 if (remove_sent_files)
299 io_multiplex_write(MSG_SUCCESS, buf, len);
300 if (preserve_hard_links)
301 flist_ndx_push(&hlink_list, IVAL(buf,0));
302 break;
303 case MSG_SOCKERR:
304 if (!am_generator) {
305 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
306 exit_cleanup(RERR_STREAMIO);
307 }
308 close_multiplexing_out();
309 /* FALL THROUGH */
310 case MSG_INFO:
311 case MSG_ERROR:
312 case MSG_LOG:
313 while (len) {
314 n = len;
315 if (n >= sizeof buf)
316 n = sizeof buf - 1;
317 read_loop(fd, buf, n);
318 rwrite((enum logcode)tag, buf, n);
319 len -= n;
320 }
321 break;
322 default:
323 rprintf(FERROR, "unknown message %d:%d\n", tag, len);
324 exit_cleanup(RERR_STREAMIO);
325 }
326
327 msg_fd_in = fd;
328}
329
330/* Try to push messages off the list onto the wire. If we leave with more
331 * to do, return 0. On error, return -1. If everything flushed, return 1.
332 * This is only active in the receiver. */
333static int msg_list_flush(int flush_it_all)
334{
335 static int written = 0;
336 struct timeval tv;
337 fd_set fds;
338
339 if (msg_fd_out < 0)
340 return -1;
341
342 while (msg_list.head) {
343 struct msg_list_item *ml = msg_list.head;
344 int n = write(msg_fd_out, ml->buf + written, ml->len - written);
345 if (n < 0) {
346 if (errno == EINTR)
347 continue;
348 if (errno != EWOULDBLOCK && errno != EAGAIN)
349 return -1;
350 if (!flush_it_all)
351 return 0;
352 FD_ZERO(&fds);
353 FD_SET(msg_fd_out, &fds);
354 tv.tv_sec = select_timeout;
355 tv.tv_usec = 0;
356 if (!select(msg_fd_out+1, NULL, &fds, NULL, &tv))
357 check_timeout();
358 } else if ((written += n) == ml->len) {
359 free(ml->buf);
360 msg_list.head = ml->next;
361 if (!msg_list.head)
362 msg_list.tail = NULL;
363 free(ml);
364 written = 0;
365 }
366 }
367 return 1;
368}
369
370void send_msg(enum msgcode code, char *buf, int len)
371{
372 if (msg_fd_out < 0) {
373 io_multiplex_write(code, buf, len);
374 return;
375 }
376 msg_list_add(code, buf, len);
377 msg_list_flush(NORMAL_FLUSH);
378}
379
380int get_redo_num(int itemizing, enum logcode code)
381{
382 while (1) {
383 if (hlink_list.head)
384 check_for_finished_hlinks(itemizing, code);
385 if (redo_list.head)
386 break;
387 read_msg_fd();
388 }
389
390 return flist_ndx_pop(&redo_list);
391}
392
393int get_hlink_num(void)
394{
395 return flist_ndx_pop(&hlink_list);
396}
397
398/**
399 * When we're the receiver and we have a local --files-from list of names
400 * that needs to be sent over the socket to the sender, we have to do two
401 * things at the same time: send the sender a list of what files we're
402 * processing and read the incoming file+info list from the sender. We do
403 * this by augmenting the read_timeout() function to copy this data. It
404 * uses the io_filesfrom_buf to read a block of data from f_in (when it is
405 * ready, since it might be a pipe) and then blast it out f_out (when it
406 * is ready to receive more data).
407 */
408void io_set_filesfrom_fds(int f_in, int f_out)
409{
410 io_filesfrom_f_in = f_in;
411 io_filesfrom_f_out = f_out;
412 io_filesfrom_bp = io_filesfrom_buf;
413 io_filesfrom_lastchar = '\0';
414 io_filesfrom_buflen = 0;
415}
416
417/* It's almost always an error to get an EOF when we're trying to read from the
418 * network, because the protocol is (for the most part) self-terminating.
419 *
420 * There is one case for the receiver when it is at the end of the transfer
421 * (hanging around reading any keep-alive packets that might come its way): if
422 * the sender dies before the generator's kill-signal comes through, we can end
423 * up here needing to loop until the kill-signal arrives. In this situation,
424 * kluge_around_eof will be < 0.
425 *
426 * There is another case for older protocol versions (< 24) where the module
427 * listing was not terminated, so we must ignore an EOF error in that case and
428 * exit. In this situation, kluge_around_eof will be > 0. */
429static void whine_about_eof(int fd)
430{
431 if (kluge_around_eof && fd == sock_f_in) {
432 int i;
433 if (kluge_around_eof > 0)
434 exit_cleanup(0);
435 /* If we're still here after 10 seconds, exit with an error. */
436 for (i = 10*1000/20; i--; )
437 msleep(20);
438 }
439
440 rprintf(FERROR, RSYNC_NAME ": connection unexpectedly closed "
441 "(%.0f bytes received so far) [%s]\n",
442 (double)stats.total_read, who_am_i());
443
444 exit_cleanup(RERR_STREAMIO);
445}
446
447/**
448 * Read from a socket with I/O timeout. return the number of bytes
449 * read. If no bytes can be read then exit, never return a number <= 0.
450 *
451 * TODO: If the remote shell connection fails, then current versions
452 * actually report an "unexpected EOF" error here. Since it's a
453 * fairly common mistake to try to use rsh when ssh is required, we
454 * should trap that: if we fail to read any data at all, we should
455 * give a better explanation. We can tell whether the connection has
456 * started by looking e.g. at whether the remote version is known yet.
457 */
458static int read_timeout(int fd, char *buf, size_t len)
459{
460 int n, cnt = 0;
461
462 io_flush(NORMAL_FLUSH);
463
464 while (cnt == 0) {
465 /* until we manage to read *something* */
466 fd_set r_fds, w_fds;
467 struct timeval tv;
468 int maxfd = fd;
469 int count;
470
471 FD_ZERO(&r_fds);
472 FD_ZERO(&w_fds);
473 FD_SET(fd, &r_fds);
474 if (msg_list.head) {
475 FD_SET(msg_fd_out, &w_fds);
476 if (msg_fd_out > maxfd)
477 maxfd = msg_fd_out;
478 }
479 if (io_filesfrom_f_out >= 0) {
480 int new_fd;
481 if (io_filesfrom_buflen == 0) {
482 if (io_filesfrom_f_in >= 0) {
483 FD_SET(io_filesfrom_f_in, &r_fds);
484 new_fd = io_filesfrom_f_in;
485 } else {
486 io_filesfrom_f_out = -1;
487 new_fd = -1;
488 }
489 } else {
490 FD_SET(io_filesfrom_f_out, &w_fds);
491 new_fd = io_filesfrom_f_out;
492 }
493 if (new_fd > maxfd)
494 maxfd = new_fd;
495 }
496
497 tv.tv_sec = select_timeout;
498 tv.tv_usec = 0;
499
500 errno = 0;
501
502 count = select(maxfd + 1, &r_fds, &w_fds, NULL, &tv);
503
504 if (count <= 0) {
505 if (errno == EBADF)
506 exit_cleanup(RERR_SOCKETIO);
507 check_timeout();
508 continue;
509 }
510
511 if (msg_list.head && FD_ISSET(msg_fd_out, &w_fds))
512 msg_list_flush(NORMAL_FLUSH);
513
514 if (io_filesfrom_f_out >= 0) {
515 if (io_filesfrom_buflen) {
516 if (FD_ISSET(io_filesfrom_f_out, &w_fds)) {
517 int l = write(io_filesfrom_f_out,
518 io_filesfrom_bp,
519 io_filesfrom_buflen);
520 if (l > 0) {
521 if (!(io_filesfrom_buflen -= l))
522 io_filesfrom_bp = io_filesfrom_buf;
523 else
524 io_filesfrom_bp += l;
525 } else {
526 /* XXX should we complain? */
527 io_filesfrom_f_out = -1;
528 }
529 }
530 } else if (io_filesfrom_f_in >= 0) {
531 if (FD_ISSET(io_filesfrom_f_in, &r_fds)) {
532 int l = read(io_filesfrom_f_in,
533 io_filesfrom_buf,
534 sizeof io_filesfrom_buf);
535 if (l <= 0) {
536 /* Send end-of-file marker */
537 io_filesfrom_buf[0] = '\0';
538 io_filesfrom_buf[1] = '\0';
539 io_filesfrom_buflen = io_filesfrom_lastchar? 2 : 1;
540 io_filesfrom_f_in = -1;
541 } else {
542 if (!eol_nulls) {
543 char *s = io_filesfrom_buf + l;
544 /* Transform CR and/or LF into '\0' */
545 while (s-- > io_filesfrom_buf) {
546 if (*s == '\n' || *s == '\r')
547 *s = '\0';
548 }
549 }
550 if (!io_filesfrom_lastchar) {
551 /* Last buf ended with a '\0', so don't
552 * let this buf start with one. */
553 while (l && !*io_filesfrom_bp)
554 io_filesfrom_bp++, l--;
555 }
556 if (!l)
557 io_filesfrom_bp = io_filesfrom_buf;
558 else {
559 char *f = io_filesfrom_bp;
560 char *t = f;
561 char *eob = f + l;
562 /* Eliminate any multi-'\0' runs. */
563 while (f != eob) {
564 if (!(*t++ = *f++)) {
565 while (f != eob && !*f)
566 f++, l--;
567 }
568 }
569 io_filesfrom_lastchar = f[-1];
570 }
571 io_filesfrom_buflen = l;
572 }
573 }
574 }
575 }
576
577 if (!FD_ISSET(fd, &r_fds))
578 continue;
579
580 n = read(fd, buf, len);
581
582 if (n <= 0) {
583 if (n == 0)
584 whine_about_eof(fd); /* Doesn't return. */
585 if (errno == EINTR || errno == EWOULDBLOCK
586 || errno == EAGAIN)
587 continue;
588
589 /* Don't write errors on a dead socket. */
590 if (fd == sock_f_in) {
591 close_multiplexing_out();
592 rsyserr(FSOCKERR, errno, "read error");
593 } else
594 rsyserr(FERROR, errno, "read error");
595 exit_cleanup(RERR_STREAMIO);
596 }
597
598 buf += n;
599 len -= n;
600 cnt += n;
601
602 if (fd == sock_f_in && io_timeout)
603 last_io_in = time(NULL);
604 }
605
606 return cnt;
607}
608
609/**
610 * Read a line into the "fname" buffer (which must be at least MAXPATHLEN
611 * characters long).
612 */
613int read_filesfrom_line(int fd, char *fname)
614{
615 char ch, *s, *eob = fname + MAXPATHLEN - 1;
616 int cnt;
617 int reading_remotely = filesfrom_host != NULL;
618 int nulls = eol_nulls || reading_remotely;
619
620 start:
621 s = fname;
622 while (1) {
623 cnt = read(fd, &ch, 1);
624 if (cnt < 0 && (errno == EWOULDBLOCK
625 || errno == EINTR || errno == EAGAIN)) {
626 struct timeval tv;
627 fd_set fds;
628 FD_ZERO(&fds);
629 FD_SET(fd, &fds);
630 tv.tv_sec = select_timeout;
631 tv.tv_usec = 0;
632 if (!select(fd+1, &fds, NULL, NULL, &tv))
633 check_timeout();
634 continue;
635 }
636 if (cnt != 1)
637 break;
638 if (nulls? !ch : (ch == '\r' || ch == '\n')) {
639 /* Skip empty lines if reading locally. */
640 if (!reading_remotely && s == fname)
641 continue;
642 break;
643 }
644 if (s < eob)
645 *s++ = ch;
646 }
647 *s = '\0';
648
649 /* Dump comments. */
650 if (*fname == '#' || *fname == ';')
651 goto start;
652
653 return s - fname;
654}
655
656static char *iobuf_out;
657static int iobuf_out_cnt;
658
659void io_start_buffering_out(void)
660{
661 if (iobuf_out)
662 return;
663 if (!(iobuf_out = new_array(char, IO_BUFFER_SIZE)))
664 out_of_memory("io_start_buffering_out");
665 iobuf_out_cnt = 0;
666}
667
668static char *iobuf_in;
669static size_t iobuf_in_siz;
670
671void io_start_buffering_in(void)
672{
673 if (iobuf_in)
674 return;
675 iobuf_in_siz = 2 * IO_BUFFER_SIZE;
676 if (!(iobuf_in = new_array(char, iobuf_in_siz)))
677 out_of_memory("io_start_buffering_in");
678}
679
680void io_end_buffering(void)
681{
682 io_flush(NORMAL_FLUSH);
683 if (!io_multiplexing_out) {
684 free(iobuf_out);
685 iobuf_out = NULL;
686 }
687}
688
689void maybe_flush_socket(void)
690{
691 if (iobuf_out && iobuf_out_cnt && time(NULL) - last_io_out >= 5)
692 io_flush(NORMAL_FLUSH);
693}
694
695void maybe_send_keepalive(void)
696{
697 if (time(NULL) - last_io_out >= allowed_lull) {
698 if (!iobuf_out || !iobuf_out_cnt) {
699 if (protocol_version < 29)
700 return; /* there's nothing we can do */
701 write_int(sock_f_out, the_file_list->count);
702 write_shortint(sock_f_out, ITEM_IS_NEW);
703 }
704 if (iobuf_out)
705 io_flush(NORMAL_FLUSH);
706 }
707}
708
709/**
710 * Continue trying to read len bytes - don't return until len has been
711 * read.
712 **/
713static void read_loop(int fd, char *buf, size_t len)
714{
715 while (len) {
716 int n = read_timeout(fd, buf, len);
717
718 buf += n;
719 len -= n;
720 }
721}
722
723/**
724 * Read from the file descriptor handling multiplexing - return number
725 * of bytes read.
726 *
727 * Never returns <= 0.
728 */
729static int readfd_unbuffered(int fd, char *buf, size_t len)
730{
731 static size_t remaining;
732 static size_t iobuf_in_ndx;
733 size_t msg_bytes;
734 int tag, cnt = 0;
735 char line[BIGPATHBUFLEN];
736
737 if (!iobuf_in || fd != sock_f_in)
738 return read_timeout(fd, buf, len);
739
740 if (!io_multiplexing_in && remaining == 0) {
741 remaining = read_timeout(fd, iobuf_in, iobuf_in_siz);
742 iobuf_in_ndx = 0;
743 }
744
745 while (cnt == 0) {
746 if (remaining) {
747 len = MIN(len, remaining);
748 memcpy(buf, iobuf_in + iobuf_in_ndx, len);
749 iobuf_in_ndx += len;
750 remaining -= len;
751 cnt = len;
752 break;
753 }
754
755 read_loop(fd, line, 4);
756 tag = IVAL(line, 0);
757
758 msg_bytes = tag & 0xFFFFFF;
759 tag = (tag >> 24) - MPLEX_BASE;
760
761 switch (tag) {
762 case MSG_DATA:
763 if (msg_bytes > iobuf_in_siz) {
764 if (!(iobuf_in = realloc_array(iobuf_in, char,
765 msg_bytes)))
766 out_of_memory("readfd_unbuffered");
767 iobuf_in_siz = msg_bytes;
768 }
769 read_loop(fd, iobuf_in, msg_bytes);
770 remaining = msg_bytes;
771 iobuf_in_ndx = 0;
772 break;
773 case MSG_DELETED:
774 if (msg_bytes >= sizeof line)
775 goto overflow;
776 read_loop(fd, line, msg_bytes);
777 line[msg_bytes] = '\0';
778 /* A directory name was sent with the trailing null */
779 if (msg_bytes > 0 && !line[msg_bytes-1])
780 log_delete(line, S_IFDIR);
781 else
782 log_delete(line, S_IFREG);
783 break;
784 case MSG_SUCCESS:
785 if (msg_bytes != 4) {
786 rprintf(FERROR, "invalid multi-message %d:%ld [%s]\n",
787 tag, (long)msg_bytes, who_am_i());
788 exit_cleanup(RERR_STREAMIO);
789 }
790 read_loop(fd, line, msg_bytes);
791 successful_send(IVAL(line, 0));
792 break;
793 case MSG_INFO:
794 case MSG_ERROR:
795 if (msg_bytes >= sizeof line) {
796 overflow:
797 rprintf(FERROR,
798 "multiplexing overflow %d:%ld [%s]\n",
799 tag, (long)msg_bytes, who_am_i());
800 exit_cleanup(RERR_STREAMIO);
801 }
802 read_loop(fd, line, msg_bytes);
803 rwrite((enum logcode)tag, line, msg_bytes);
804 break;
805 default:
806 rprintf(FERROR, "unexpected tag %d [%s]\n",
807 tag, who_am_i());
808 exit_cleanup(RERR_STREAMIO);
809 }
810 }
811
812 if (remaining == 0)
813 io_flush(NORMAL_FLUSH);
814
815 return cnt;
816}
817
818/**
819 * Do a buffered read from @p fd. Don't return until all @p n bytes
820 * have been read. If all @p n can't be read then exit with an
821 * error.
822 **/
823static void readfd(int fd, char *buffer, size_t N)
824{
825 int cnt;
826 size_t total = 0;
827
828 while (total < N) {
829 cnt = readfd_unbuffered(fd, buffer + total, N-total);
830 total += cnt;
831 }
832
833 if (fd == write_batch_monitor_in) {
834 if ((size_t)write(batch_fd, buffer, total) != total)
835 exit_cleanup(RERR_FILEIO);
836 }
837
838 if (fd == sock_f_in)
839 stats.total_read += total;
840}
841
842int read_shortint(int f)
843{
844 uchar b[2];
845 readfd(f, (char *)b, 2);
846 return (b[1] << 8) + b[0];
847}
848
849int32 read_int(int f)
850{
851 char b[4];
852 int32 num;
853
854 readfd(f,b,4);
855 num = IVAL(b,0);
856 if (num == (int32)0xffffffff)
857 return -1;
858 return num;
859}
860
861int64 read_longint(int f)
862{
863 int64 num;
864 char b[8];
865 num = read_int(f);
866
867 if ((int32)num != (int32)0xffffffff)
868 return num;
869
870#if SIZEOF_INT64 < 8
871 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
872 exit_cleanup(RERR_UNSUPPORTED);
873#else
874 readfd(f,b,8);
875 num = IVAL(b,0) | (((int64)IVAL(b,4))<<32);
876#endif
877
878 return num;
879}
880
881void read_buf(int f,char *buf,size_t len)
882{
883 readfd(f,buf,len);
884}
885
886void read_sbuf(int f,char *buf,size_t len)
887{
888 readfd(f, buf, len);
889 buf[len] = '\0';
890}
891
892uchar read_byte(int f)
893{
894 uchar c;
895 readfd(f, (char *)&c, 1);
896 return c;
897}
898
899int read_vstring(int f, char *buf, int bufsize)
900{
901 int len = read_byte(f);
902
903 if (len & 0x80)
904 len = (len & ~0x80) * 0x100 + read_byte(f);
905
906 if (len >= bufsize) {
907 rprintf(FERROR, "over-long vstring received (%d > %d)\n",
908 len, bufsize - 1);
909 return -1;
910 }
911
912 if (len)
913 readfd(f, buf, len);
914 buf[len] = '\0';
915 return len;
916}
917
918/* Populate a sum_struct with values from the socket. This is
919 * called by both the sender and the receiver. */
920void read_sum_head(int f, struct sum_struct *sum)
921{
922 sum->count = read_int(f);
923 sum->blength = read_int(f);
924 if (sum->blength < 0 || sum->blength > MAX_BLOCK_SIZE) {
925 rprintf(FERROR, "Invalid block length %ld [%s]\n",
926 (long)sum->blength, who_am_i());
927 exit_cleanup(RERR_PROTOCOL);
928 }
929 sum->s2length = protocol_version < 27 ? csum_length : (int)read_int(f);
930 if (sum->s2length < 0 || sum->s2length > MD4_SUM_LENGTH) {
931 rprintf(FERROR, "Invalid checksum length %d [%s]\n",
932 sum->s2length, who_am_i());
933 exit_cleanup(RERR_PROTOCOL);
934 }
935 sum->remainder = read_int(f);
936 if (sum->remainder < 0 || sum->remainder > sum->blength) {
937 rprintf(FERROR, "Invalid remainder length %ld [%s]\n",
938 (long)sum->remainder, who_am_i());
939 exit_cleanup(RERR_PROTOCOL);
940 }
941}
942
943/* Send the values from a sum_struct over the socket. Set sum to
944 * NULL if there are no checksums to send. This is called by both
945 * the generator and the sender. */
946void write_sum_head(int f, struct sum_struct *sum)
947{
948 static struct sum_struct null_sum;
949
950 if (sum == NULL)
951 sum = &null_sum;
952
953 write_int(f, sum->count);
954 write_int(f, sum->blength);
955 if (protocol_version >= 27)
956 write_int(f, sum->s2length);
957 write_int(f, sum->remainder);
958}
959
960/**
961 * Sleep after writing to limit I/O bandwidth usage.
962 *
963 * @todo Rather than sleeping after each write, it might be better to
964 * use some kind of averaging. The current algorithm seems to always
965 * use a bit less bandwidth than specified, because it doesn't make up
966 * for slow periods. But arguably this is a feature. In addition, we
967 * ought to take the time used to write the data into account.
968 *
969 * During some phases of big transfers (file FOO is uptodate) this is
970 * called with a small bytes_written every time. As the kernel has to
971 * round small waits up to guarantee that we actually wait at least the
972 * requested number of microseconds, this can become grossly inaccurate.
973 * We therefore keep track of the bytes we've written over time and only
974 * sleep when the accumulated delay is at least 1 tenth of a second.
975 **/
976static void sleep_for_bwlimit(int bytes_written)
977{
978 static struct timeval prior_tv;
979 static long total_written = 0;
980 struct timeval tv, start_tv;
981 long elapsed_usec, sleep_usec;
982
983#define ONE_SEC 1000000L /* # of microseconds in a second */
984
985 if (!bwlimit)
986 return;
987
988 total_written += bytes_written;
989
990 gettimeofday(&start_tv, NULL);
991 if (prior_tv.tv_sec) {
992 elapsed_usec = (start_tv.tv_sec - prior_tv.tv_sec) * ONE_SEC
993 + (start_tv.tv_usec - prior_tv.tv_usec);
994 total_written -= elapsed_usec * bwlimit / (ONE_SEC/1024);
995 if (total_written < 0)
996 total_written = 0;
997 }
998
999 sleep_usec = total_written * (ONE_SEC/1024) / bwlimit;
1000 if (sleep_usec < ONE_SEC / 10) {
1001 prior_tv = start_tv;
1002 return;
1003 }
1004
1005 tv.tv_sec = sleep_usec / ONE_SEC;
1006 tv.tv_usec = sleep_usec % ONE_SEC;
1007 select(0, NULL, NULL, NULL, &tv);
1008
1009 gettimeofday(&prior_tv, NULL);
1010 elapsed_usec = (prior_tv.tv_sec - start_tv.tv_sec) * ONE_SEC
1011 + (prior_tv.tv_usec - start_tv.tv_usec);
1012 total_written = (sleep_usec - elapsed_usec) * bwlimit / (ONE_SEC/1024);
1013}
1014
1015/* Write len bytes to the file descriptor fd, looping as necessary to get
1016 * the job done and also (in certain circumstances) reading any data on
1017 * msg_fd_in to avoid deadlock.
1018 *
1019 * This function underlies the multiplexing system. The body of the
1020 * application never calls this function directly. */
1021static void writefd_unbuffered(int fd,char *buf,size_t len)
1022{
1023 size_t n, total = 0;
1024 fd_set w_fds, r_fds;
1025 int maxfd, count, cnt, using_r_fds;
1026 struct timeval tv;
1027
1028 no_flush++;
1029
1030 while (total < len) {
1031 FD_ZERO(&w_fds);
1032 FD_SET(fd,&w_fds);
1033 maxfd = fd;
1034
1035 if (msg_fd_in >= 0 && len-total >= contiguous_write_len) {
1036 FD_ZERO(&r_fds);
1037 FD_SET(msg_fd_in,&r_fds);
1038 if (msg_fd_in > maxfd)
1039 maxfd = msg_fd_in;
1040 using_r_fds = 1;
1041 } else
1042 using_r_fds = 0;
1043
1044 tv.tv_sec = select_timeout;
1045 tv.tv_usec = 0;
1046
1047 errno = 0;
1048 count = select(maxfd + 1, using_r_fds ? &r_fds : NULL,
1049 &w_fds, NULL, &tv);
1050
1051 if (count <= 0) {
1052 if (count < 0 && errno == EBADF)
1053 exit_cleanup(RERR_SOCKETIO);
1054 check_timeout();
1055 continue;
1056 }
1057
1058 if (using_r_fds && FD_ISSET(msg_fd_in, &r_fds))
1059 read_msg_fd();
1060
1061 if (!FD_ISSET(fd, &w_fds))
1062 continue;
1063
1064 n = len - total;
1065 if (bwlimit && n > bwlimit_writemax)
1066 n = bwlimit_writemax;
1067 cnt = write(fd, buf + total, n);
1068
1069 if (cnt <= 0) {
1070 if (cnt < 0) {
1071 if (errno == EINTR)
1072 continue;
1073 if (errno == EWOULDBLOCK || errno == EAGAIN) {
1074 msleep(1);
1075 continue;
1076 }
1077 }
1078
1079 /* Don't try to write errors back across the stream. */
1080 if (fd == sock_f_out)
1081 close_multiplexing_out();
1082 rsyserr(FERROR, errno,
1083 "writefd_unbuffered failed to write %ld bytes: phase \"%s\" [%s]",
1084 (long)len, io_write_phase, who_am_i());
1085 /* If the other side is sending us error messages, try
1086 * to grab any messages they sent before they died. */
1087 while (fd == sock_f_out && io_multiplexing_in) {
1088 set_io_timeout(30);
1089 ignore_timeout = 0;
1090 readfd_unbuffered(sock_f_in, io_filesfrom_buf,
1091 sizeof io_filesfrom_buf);
1092 }
1093 exit_cleanup(RERR_STREAMIO);
1094 }
1095
1096 total += cnt;
1097
1098 if (fd == sock_f_out) {
1099 if (io_timeout || am_generator)
1100 last_io_out = time(NULL);
1101 sleep_for_bwlimit(cnt);
1102 }
1103 }
1104
1105 no_flush--;
1106}
1107
1108/**
1109 * Write an message to a multiplexed stream. If this fails then rsync
1110 * exits.
1111 **/
1112static void mplex_write(enum msgcode code, char *buf, size_t len)
1113{
1114 char buffer[BIGPATHBUFLEN];
1115 size_t n = len;
1116
1117 SIVAL(buffer, 0, ((MPLEX_BASE + (int)code)<<24) + len);
1118
1119 /* When the generator reads messages from the msg_fd_in pipe, it can
1120 * cause output to occur down the socket. Setting contiguous_write_len
1121 * prevents the reading of msg_fd_in once we actually start to write
1122 * this sequence of data (though we might read it before the start). */
1123 if (am_generator && msg_fd_in >= 0)
1124 contiguous_write_len = len + 4;
1125
1126 if (n > sizeof buffer - 4)
1127 n = sizeof buffer - 4;
1128
1129 memcpy(&buffer[4], buf, n);
1130 writefd_unbuffered(sock_f_out, buffer, n+4);
1131
1132 len -= n;
1133 buf += n;
1134
1135 if (len)
1136 writefd_unbuffered(sock_f_out, buf, len);
1137
1138 if (am_generator && msg_fd_in >= 0)
1139 contiguous_write_len = 0;
1140}
1141
1142void io_flush(int flush_it_all)
1143{
1144 msg_list_flush(flush_it_all);
1145
1146 if (!iobuf_out_cnt || no_flush)
1147 return;
1148
1149 if (io_multiplexing_out)
1150 mplex_write(MSG_DATA, iobuf_out, iobuf_out_cnt);
1151 else
1152 writefd_unbuffered(sock_f_out, iobuf_out, iobuf_out_cnt);
1153 iobuf_out_cnt = 0;
1154}
1155
1156static void writefd(int fd,char *buf,size_t len)
1157{
1158 if (fd == msg_fd_out) {
1159 rprintf(FERROR, "Internal error: wrong write used in receiver.\n");
1160 exit_cleanup(RERR_PROTOCOL);
1161 }
1162
1163 if (fd == sock_f_out)
1164 stats.total_written += len;
1165
1166 if (fd == write_batch_monitor_out) {
1167 if ((size_t)write(batch_fd, buf, len) != len)
1168 exit_cleanup(RERR_FILEIO);
1169 }
1170
1171 if (!iobuf_out || fd != sock_f_out) {
1172 writefd_unbuffered(fd, buf, len);
1173 return;
1174 }
1175
1176 while (len) {
1177 int n = MIN((int)len, IO_BUFFER_SIZE - iobuf_out_cnt);
1178 if (n > 0) {
1179 memcpy(iobuf_out+iobuf_out_cnt, buf, n);
1180 buf += n;
1181 len -= n;
1182 iobuf_out_cnt += n;
1183 }
1184
1185 if (iobuf_out_cnt == IO_BUFFER_SIZE)
1186 io_flush(NORMAL_FLUSH);
1187 }
1188}
1189
1190void write_shortint(int f, int x)
1191{
1192 uchar b[2];
1193 b[0] = x;
1194 b[1] = x >> 8;
1195 writefd(f, (char *)b, 2);
1196}
1197
1198void write_int(int f,int32 x)
1199{
1200 char b[4];
1201 SIVAL(b,0,x);
1202 writefd(f,b,4);
1203}
1204
1205void write_int_named(int f, int32 x, const char *phase)
1206{
1207 io_write_phase = phase;
1208 write_int(f, x);
1209 io_write_phase = phase_unknown;
1210}
1211
1212/*
1213 * Note: int64 may actually be a 32-bit type if ./configure couldn't find any
1214 * 64-bit types on this platform.
1215 */
1216void write_longint(int f, int64 x)
1217{
1218 char b[8];
1219
1220 if (x <= 0x7FFFFFFF) {
1221 write_int(f, (int)x);
1222 return;
1223 }
1224
1225#if SIZEOF_INT64 < 8
1226 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
1227 exit_cleanup(RERR_UNSUPPORTED);
1228#else
1229 write_int(f, (int32)0xFFFFFFFF);
1230 SIVAL(b,0,(x&0xFFFFFFFF));
1231 SIVAL(b,4,((x>>32)&0xFFFFFFFF));
1232
1233 writefd(f,b,8);
1234#endif
1235}
1236
1237void write_buf(int f,char *buf,size_t len)
1238{
1239 writefd(f,buf,len);
1240}
1241
1242/** Write a string to the connection */
1243void write_sbuf(int f, char *buf)
1244{
1245 writefd(f, buf, strlen(buf));
1246}
1247
1248void write_byte(int f, uchar c)
1249{
1250 writefd(f, (char *)&c, 1);
1251}
1252
1253void write_vstring(int f, char *str, int len)
1254{
1255 uchar lenbuf[3], *lb = lenbuf;
1256
1257 if (len > 0x7F) {
1258 if (len > 0x7FFF) {
1259 rprintf(FERROR,
1260 "attempting to send over-long vstring (%d > %d)\n",
1261 len, 0x7FFF);
1262 exit_cleanup(RERR_PROTOCOL);
1263 }
1264 *lb++ = len / 0x100 + 0x80;
1265 }
1266 *lb = len;
1267
1268 writefd(f, (char*)lenbuf, lb - lenbuf + 1);
1269 if (len)
1270 writefd(f, str, len);
1271}
1272
1273/**
1274 * Read a line of up to @p maxlen characters into @p buf (not counting
1275 * the trailing null). Strips the (required) trailing newline and all
1276 * carriage returns.
1277 *
1278 * @return 1 for success; 0 for I/O error or truncation.
1279 **/
1280int read_line(int f, char *buf, size_t maxlen)
1281{
1282 while (maxlen) {
1283 buf[0] = 0;
1284 read_buf(f, buf, 1);
1285 if (buf[0] == 0)
1286 return 0;
1287 if (buf[0] == '\n')
1288 break;
1289 if (buf[0] != '\r') {
1290 buf++;
1291 maxlen--;
1292 }
1293 }
1294 *buf = '\0';
1295 return maxlen > 0;
1296}
1297
1298void io_printf(int fd, const char *format, ...)
1299{
1300 va_list ap;
1301 char buf[BIGPATHBUFLEN];
1302 int len;
1303
1304 va_start(ap, format);
1305 len = vsnprintf(buf, sizeof buf, format, ap);
1306 va_end(ap);
1307
1308 if (len < 0)
1309 exit_cleanup(RERR_STREAMIO);
1310
1311 if (len > (int)sizeof buf) {
1312 rprintf(FERROR, "io_printf() was too long for the buffer.\n");
1313 exit_cleanup(RERR_STREAMIO);
1314 }
1315
1316 write_sbuf(fd, buf);
1317}
1318
1319/** Setup for multiplexing a MSG_* stream with the data stream. */
1320void io_start_multiplex_out(void)
1321{
1322 io_flush(NORMAL_FLUSH);
1323 io_start_buffering_out();
1324 io_multiplexing_out = 1;
1325}
1326
1327/** Setup for multiplexing a MSG_* stream with the data stream. */
1328void io_start_multiplex_in(void)
1329{
1330 io_flush(NORMAL_FLUSH);
1331 io_start_buffering_in();
1332 io_multiplexing_in = 1;
1333}
1334
1335/** Write an message to the multiplexed data stream. */
1336int io_multiplex_write(enum msgcode code, char *buf, size_t len)
1337{
1338 if (!io_multiplexing_out)
1339 return 0;
1340
1341 io_flush(NORMAL_FLUSH);
1342 stats.total_written += (len+4);
1343 mplex_write(code, buf, len);
1344 return 1;
1345}
1346
1347void close_multiplexing_in(void)
1348{
1349 io_multiplexing_in = 0;
1350}
1351
1352/** Stop output multiplexing. */
1353void close_multiplexing_out(void)
1354{
1355 io_multiplexing_out = 0;
1356}
1357
1358void start_write_batch(int fd)
1359{
1360 write_stream_flags(batch_fd);
1361
1362 /* Some communication has already taken place, but we don't
1363 * enable batch writing until here so that we can write a
1364 * canonical record of the communication even though the
1365 * actual communication so far depends on whether a daemon
1366 * is involved. */
1367 write_int(batch_fd, protocol_version);
1368 write_int(batch_fd, checksum_seed);
1369
1370 if (am_sender)
1371 write_batch_monitor_out = fd;
1372 else
1373 write_batch_monitor_in = fd;
1374}
1375
1376void stop_write_batch(void)
1377{
1378 write_batch_monitor_out = -1;
1379 write_batch_monitor_in = -1;
1380}