My modified version of Chris Shoemaker's improved batch-file handling.
[rsync/rsync.git] / io.c
... / ...
CommitLineData
1/* -*- c-file-style: "linux" -*-
2 *
3 * Copyright (C) 1996-2001 by Andrew Tridgell
4 * Copyright (C) Paul Mackerras 1996
5 * Copyright (C) 2001, 2002 by Martin Pool <mbp@samba.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22/**
23 * @file io.c
24 *
25 * Socket and pipe I/O utilities used in rsync.
26 *
27 * rsync provides its own multiplexing system, which is used to send
28 * stderr and stdout over a single socket. We need this because
29 * stdout normally carries the binary data stream, and stderr all our
30 * error messages.
31 *
32 * For historical reasons this is off during the start of the
33 * connection, but it's switched on quite early using
34 * io_start_multiplex_out() and io_start_multiplex_in().
35 **/
36
37#include "rsync.h"
38
39/** If no timeout is specified then use a 60 second select timeout */
40#define SELECT_TIMEOUT 60
41
42static int io_multiplexing_out;
43static int io_multiplexing_in;
44static int multiplex_in_fd = -1;
45static int multiplex_out_fd = -1;
46static time_t last_io;
47static int no_flush;
48
49extern int bwlimit;
50extern size_t bwlimit_writemax;
51extern int verbose;
52extern int io_timeout;
53extern int am_server;
54extern int am_daemon;
55extern int am_sender;
56extern int eol_nulls;
57extern int checksum_seed;
58extern int protocol_version;
59extern char *remote_filesfrom_file;
60extern struct stats stats;
61
62const char phase_unknown[] = "unknown";
63int select_timeout = SELECT_TIMEOUT;
64int batch_fd = -1;
65
66/**
67 * The connection might be dropped at some point; perhaps because the
68 * remote instance crashed. Just giving the offset on the stream is
69 * not very helpful. So instead we try to make io_phase_name point to
70 * something useful.
71 *
72 * For buffered/multiplexed I/O these names will be somewhat
73 * approximate; perhaps for ease of support we would rather make the
74 * buffer always flush when a single application-level I/O finishes.
75 *
76 * @todo Perhaps we want some simple stack functionality, but there's
77 * no need to overdo it.
78 **/
79const char *io_write_phase = phase_unknown;
80const char *io_read_phase = phase_unknown;
81
82/** Ignore EOF errors while reading a module listing if the remote
83 version is 24 or less. */
84int kludge_around_eof = False;
85
86int msg_fd_in = -1;
87int msg_fd_out = -1;
88
89static int write_batch_monitor_in = -1;
90static int write_batch_monitor_out = -1;
91
92static int io_filesfrom_f_in = -1;
93static int io_filesfrom_f_out = -1;
94static char io_filesfrom_buf[2048];
95static char *io_filesfrom_bp;
96static char io_filesfrom_lastchar;
97static int io_filesfrom_buflen;
98
99static void read_loop(int fd, char *buf, size_t len);
100
101struct redo_list {
102 struct redo_list *next;
103 int num;
104};
105
106static struct redo_list *redo_list_head;
107static struct redo_list *redo_list_tail;
108
109struct msg_list {
110 struct msg_list *next;
111 char *buf;
112 int len;
113};
114
115static struct msg_list *msg_list_head;
116static struct msg_list *msg_list_tail;
117
118static void redo_list_add(int num)
119{
120 struct redo_list *rl;
121
122 if (!(rl = new(struct redo_list)))
123 exit_cleanup(RERR_MALLOC);
124 rl->next = NULL;
125 rl->num = num;
126 if (redo_list_tail)
127 redo_list_tail->next = rl;
128 else
129 redo_list_head = rl;
130 redo_list_tail = rl;
131}
132
133static void check_timeout(void)
134{
135 time_t t;
136
137 if (!io_timeout)
138 return;
139
140 if (!last_io) {
141 last_io = time(NULL);
142 return;
143 }
144
145 t = time(NULL);
146
147 if (last_io && io_timeout && (t-last_io) >= io_timeout) {
148 if (!am_server && !am_daemon) {
149 rprintf(FERROR, "io timeout after %d seconds - exiting\n",
150 (int)(t-last_io));
151 }
152 exit_cleanup(RERR_TIMEOUT);
153 }
154}
155
156/** Setup the fd used to receive MSG_* messages. Only needed when
157 * we're the generator because the sender and receiver both use the
158 * multiplexed I/O setup. */
159void set_msg_fd_in(int fd)
160{
161 msg_fd_in = fd;
162}
163
164/** Setup the fd used to send our MSG_* messages. Only needed when
165 * we're the receiver because the generator and the sender both use
166 * the multiplexed I/O setup. */
167void set_msg_fd_out(int fd)
168{
169 msg_fd_out = fd;
170 set_nonblocking(msg_fd_out);
171}
172
173/* Add a message to the pending MSG_* list. */
174static void msg_list_add(int code, char *buf, int len)
175{
176 struct msg_list *ml;
177
178 if (!(ml = new(struct msg_list)))
179 exit_cleanup(RERR_MALLOC);
180 ml->next = NULL;
181 if (!(ml->buf = new_array(char, len+4)))
182 exit_cleanup(RERR_MALLOC);
183 SIVAL(ml->buf, 0, ((code+MPLEX_BASE)<<24) | len);
184 memcpy(ml->buf+4, buf, len);
185 ml->len = len+4;
186 if (msg_list_tail)
187 msg_list_tail->next = ml;
188 else
189 msg_list_head = ml;
190 msg_list_tail = ml;
191}
192
193void send_msg(enum msgcode code, char *buf, int len)
194{
195 msg_list_add(code, buf, len);
196 msg_list_push(NORMAL_FLUSH);
197}
198
199/** Read a message from the MSG_* fd and dispatch it. This is only
200 * called by the generator. */
201static void read_msg_fd(void)
202{
203 char buf[2048];
204 size_t n;
205 int fd = msg_fd_in;
206 int tag, len;
207
208 /* Temporarily disable msg_fd_in. This is needed to avoid looping back
209 * to this routine from read_timeout() and writefd_unbuffered(). */
210 msg_fd_in = -1;
211
212 read_loop(fd, buf, 4);
213 tag = IVAL(buf, 0);
214
215 len = tag & 0xFFFFFF;
216 tag = (tag >> 24) - MPLEX_BASE;
217
218 switch (tag) {
219 case MSG_DONE:
220 if (len != 0) {
221 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
222 exit_cleanup(RERR_STREAMIO);
223 }
224 redo_list_add(-1);
225 break;
226 case MSG_REDO:
227 if (len != 4) {
228 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
229 exit_cleanup(RERR_STREAMIO);
230 }
231 read_loop(fd, buf, 4);
232 redo_list_add(IVAL(buf,0));
233 break;
234 case MSG_INFO:
235 case MSG_ERROR:
236 case MSG_LOG:
237 while (len) {
238 n = len;
239 if (n >= sizeof buf)
240 n = sizeof buf - 1;
241 read_loop(fd, buf, n);
242 rwrite((enum logcode)tag, buf, n);
243 len -= n;
244 }
245 break;
246 default:
247 rprintf(FERROR, "unknown message %d:%d\n", tag, len);
248 exit_cleanup(RERR_STREAMIO);
249 }
250
251 msg_fd_in = fd;
252}
253
254/* Try to push messages off the list onto the wire. If we leave with more
255 * to do, return 0. On error, return -1. If everything flushed, return 1.
256 * This is only active in the receiver. */
257int msg_list_push(int flush_it_all)
258{
259 static int written = 0;
260 struct timeval tv;
261 fd_set fds;
262
263 if (msg_fd_out < 0)
264 return -1;
265
266 while (msg_list_head) {
267 struct msg_list *ml = msg_list_head;
268 int n = write(msg_fd_out, ml->buf + written, ml->len - written);
269 if (n < 0) {
270 if (errno == EINTR)
271 continue;
272 if (errno != EWOULDBLOCK && errno != EAGAIN)
273 return -1;
274 if (!flush_it_all)
275 return 0;
276 FD_ZERO(&fds);
277 FD_SET(msg_fd_out, &fds);
278 tv.tv_sec = select_timeout;
279 tv.tv_usec = 0;
280 if (!select(msg_fd_out+1, NULL, &fds, NULL, &tv))
281 check_timeout();
282 } else if ((written += n) == ml->len) {
283 free(ml->buf);
284 msg_list_head = ml->next;
285 if (!msg_list_head)
286 msg_list_tail = NULL;
287 free(ml);
288 written = 0;
289 }
290 }
291 return 1;
292}
293
294int get_redo_num(void)
295{
296 struct redo_list *next;
297 int num;
298
299 while (!redo_list_head)
300 read_msg_fd();
301
302 num = redo_list_head->num;
303 next = redo_list_head->next;
304 free(redo_list_head);
305 redo_list_head = next;
306 if (!next)
307 redo_list_tail = NULL;
308
309 return num;
310}
311
312/**
313 * When we're the receiver and we have a local --files-from list of names
314 * that needs to be sent over the socket to the sender, we have to do two
315 * things at the same time: send the sender a list of what files we're
316 * processing and read the incoming file+info list from the sender. We do
317 * this by augmenting the read_timeout() function to copy this data. It
318 * uses the io_filesfrom_buf to read a block of data from f_in (when it is
319 * ready, since it might be a pipe) and then blast it out f_out (when it
320 * is ready to receive more data).
321 */
322void io_set_filesfrom_fds(int f_in, int f_out)
323{
324 io_filesfrom_f_in = f_in;
325 io_filesfrom_f_out = f_out;
326 io_filesfrom_bp = io_filesfrom_buf;
327 io_filesfrom_lastchar = '\0';
328 io_filesfrom_buflen = 0;
329}
330
331/**
332 * It's almost always an error to get an EOF when we're trying to read
333 * from the network, because the protocol is self-terminating.
334 *
335 * However, there is one unfortunate cases where it is not, which is
336 * rsync <2.4.6 sending a list of modules on a server, since the list
337 * is terminated by closing the socket. So, for the section of the
338 * program where that is a problem (start_socket_client),
339 * kludge_around_eof is True and we just exit.
340 */
341static void whine_about_eof(void)
342{
343 if (kludge_around_eof)
344 exit_cleanup(0);
345
346 rprintf(FERROR, RSYNC_NAME ": connection unexpectedly closed "
347 "(%.0f bytes read so far)\n",
348 (double)stats.total_read);
349
350 exit_cleanup(RERR_STREAMIO);
351}
352
353
354static void die_from_readerr(int err)
355{
356 /* this prevents us trying to write errors on a dead socket */
357 io_multiplexing_close();
358
359 rsyserr(FERROR, err, "read error");
360 exit_cleanup(RERR_STREAMIO);
361}
362
363
364/**
365 * Read from a socket with I/O timeout. return the number of bytes
366 * read. If no bytes can be read then exit, never return a number <= 0.
367 *
368 * TODO: If the remote shell connection fails, then current versions
369 * actually report an "unexpected EOF" error here. Since it's a
370 * fairly common mistake to try to use rsh when ssh is required, we
371 * should trap that: if we fail to read any data at all, we should
372 * give a better explanation. We can tell whether the connection has
373 * started by looking e.g. at whether the remote version is known yet.
374 */
375static int read_timeout(int fd, char *buf, size_t len)
376{
377 int n, ret = 0;
378
379 io_flush(NORMAL_FLUSH);
380
381 while (ret == 0) {
382 /* until we manage to read *something* */
383 fd_set r_fds, w_fds;
384 struct timeval tv;
385 int maxfd = fd;
386 int count;
387
388 FD_ZERO(&r_fds);
389 FD_ZERO(&w_fds);
390 FD_SET(fd, &r_fds);
391 if (msg_fd_in >= 0) {
392 FD_SET(msg_fd_in, &r_fds);
393 if (msg_fd_in > maxfd)
394 maxfd = msg_fd_in;
395 } else if (msg_list_head) {
396 FD_SET(msg_fd_out, &w_fds);
397 if (msg_fd_out > maxfd)
398 maxfd = msg_fd_out;
399 }
400 if (io_filesfrom_f_out >= 0) {
401 int new_fd;
402 if (io_filesfrom_buflen == 0) {
403 if (io_filesfrom_f_in >= 0) {
404 FD_SET(io_filesfrom_f_in, &r_fds);
405 new_fd = io_filesfrom_f_in;
406 } else {
407 io_filesfrom_f_out = -1;
408 new_fd = -1;
409 }
410 } else {
411 FD_SET(io_filesfrom_f_out, &w_fds);
412 new_fd = io_filesfrom_f_out;
413 }
414 if (new_fd > maxfd)
415 maxfd = new_fd;
416 }
417
418 tv.tv_sec = select_timeout;
419 tv.tv_usec = 0;
420
421 errno = 0;
422
423 count = select(maxfd + 1, &r_fds, &w_fds, NULL, &tv);
424
425 if (count <= 0) {
426 if (errno == EBADF)
427 exit_cleanup(RERR_SOCKETIO);
428 check_timeout();
429 continue;
430 }
431
432 if (msg_fd_in >= 0 && FD_ISSET(msg_fd_in, &r_fds))
433 read_msg_fd();
434 else if (msg_list_head && FD_ISSET(msg_fd_out, &w_fds))
435 msg_list_push(NORMAL_FLUSH);
436
437 if (io_filesfrom_f_out >= 0) {
438 if (io_filesfrom_buflen) {
439 if (FD_ISSET(io_filesfrom_f_out, &w_fds)) {
440 int l = write(io_filesfrom_f_out,
441 io_filesfrom_bp,
442 io_filesfrom_buflen);
443 if (l > 0) {
444 if (!(io_filesfrom_buflen -= l))
445 io_filesfrom_bp = io_filesfrom_buf;
446 else
447 io_filesfrom_bp += l;
448 } else {
449 /* XXX should we complain? */
450 io_filesfrom_f_out = -1;
451 }
452 }
453 } else if (io_filesfrom_f_in >= 0) {
454 if (FD_ISSET(io_filesfrom_f_in, &r_fds)) {
455 int l = read(io_filesfrom_f_in,
456 io_filesfrom_buf,
457 sizeof io_filesfrom_buf);
458 if (l <= 0) {
459 /* Send end-of-file marker */
460 io_filesfrom_buf[0] = '\0';
461 io_filesfrom_buf[1] = '\0';
462 io_filesfrom_buflen = io_filesfrom_lastchar? 2 : 1;
463 io_filesfrom_f_in = -1;
464 } else {
465 if (!eol_nulls) {
466 char *s = io_filesfrom_buf + l;
467 /* Transform CR and/or LF into '\0' */
468 while (s-- > io_filesfrom_buf) {
469 if (*s == '\n' || *s == '\r')
470 *s = '\0';
471 }
472 }
473 if (!io_filesfrom_lastchar) {
474 /* Last buf ended with a '\0', so don't
475 * let this buf start with one. */
476 while (l && !*io_filesfrom_bp)
477 io_filesfrom_bp++, l--;
478 }
479 if (!l)
480 io_filesfrom_bp = io_filesfrom_buf;
481 else {
482 char *f = io_filesfrom_bp;
483 char *t = f;
484 char *eob = f + l;
485 /* Eliminate any multi-'\0' runs. */
486 while (f != eob) {
487 if (!(*t++ = *f++)) {
488 while (f != eob && !*f)
489 f++, l--;
490 }
491 }
492 io_filesfrom_lastchar = f[-1];
493 }
494 io_filesfrom_buflen = l;
495 }
496 }
497 }
498 }
499
500 if (!FD_ISSET(fd, &r_fds))
501 continue;
502
503 n = read(fd, buf, len);
504
505 if (n <= 0) {
506 if (n == 0)
507 whine_about_eof(); /* Doesn't return. */
508 if (errno == EINTR || errno == EWOULDBLOCK
509 || errno == EAGAIN)
510 continue;
511 die_from_readerr(errno); /* Doesn't return. */
512 }
513
514 buf += n;
515 len -= n;
516 ret += n;
517 if (io_timeout)
518 last_io = time(NULL);
519 }
520
521 return ret;
522}
523
524/**
525 * Read a line into the "fname" buffer (which must be at least MAXPATHLEN
526 * characters long).
527 */
528int read_filesfrom_line(int fd, char *fname)
529{
530 char ch, *s, *eob = fname + MAXPATHLEN - 1;
531 int cnt;
532 int reading_remotely = remote_filesfrom_file != NULL;
533 int nulls = eol_nulls || reading_remotely;
534
535 start:
536 s = fname;
537 while (1) {
538 cnt = read(fd, &ch, 1);
539 if (cnt < 0 && (errno == EWOULDBLOCK
540 || errno == EINTR || errno == EAGAIN)) {
541 struct timeval tv;
542 fd_set fds;
543 FD_ZERO(&fds);
544 FD_SET(fd, &fds);
545 tv.tv_sec = select_timeout;
546 tv.tv_usec = 0;
547 if (!select(fd+1, &fds, NULL, NULL, &tv))
548 check_timeout();
549 continue;
550 }
551 if (cnt != 1)
552 break;
553 if (nulls? !ch : (ch == '\r' || ch == '\n')) {
554 /* Skip empty lines if reading locally. */
555 if (!reading_remotely && s == fname)
556 continue;
557 break;
558 }
559 if (s < eob)
560 *s++ = ch;
561 }
562 *s = '\0';
563
564 /* Dump comments. */
565 if (*fname == '#' || *fname == ';')
566 goto start;
567
568 return s - fname;
569}
570
571
572/**
573 * Continue trying to read len bytes - don't return until len has been
574 * read.
575 **/
576static void read_loop(int fd, char *buf, size_t len)
577{
578 while (len) {
579 int n = read_timeout(fd, buf, len);
580
581 buf += n;
582 len -= n;
583 }
584}
585
586
587/**
588 * Read from the file descriptor handling multiplexing - return number
589 * of bytes read.
590 *
591 * Never returns <= 0.
592 */
593static int readfd_unbuffered(int fd, char *buf, size_t len)
594{
595 static size_t remaining;
596 int tag, ret = 0;
597 char line[1024];
598 static char *buffer;
599 static size_t bufferIdx = 0;
600 static size_t bufferSz;
601
602 if (fd != multiplex_in_fd)
603 return read_timeout(fd, buf, len);
604
605 if (!io_multiplexing_in && remaining == 0) {
606 if (!buffer) {
607 bufferSz = 2 * IO_BUFFER_SIZE;
608 buffer = new_array(char, bufferSz);
609 if (!buffer)
610 out_of_memory("readfd_unbuffered");
611 }
612 remaining = read_timeout(fd, buffer, bufferSz);
613 bufferIdx = 0;
614 }
615
616 while (ret == 0) {
617 if (remaining) {
618 len = MIN(len, remaining);
619 memcpy(buf, buffer + bufferIdx, len);
620 bufferIdx += len;
621 remaining -= len;
622 ret = len;
623 break;
624 }
625
626 read_loop(fd, line, 4);
627 tag = IVAL(line, 0);
628
629 remaining = tag & 0xFFFFFF;
630 tag = (tag >> 24) - MPLEX_BASE;
631
632 switch (tag) {
633 case MSG_DATA:
634 if (!buffer || remaining > bufferSz) {
635 buffer = realloc_array(buffer, char, remaining);
636 if (!buffer)
637 out_of_memory("readfd_unbuffered");
638 bufferSz = remaining;
639 }
640 read_loop(fd, buffer, remaining);
641 bufferIdx = 0;
642 break;
643 case MSG_INFO:
644 case MSG_ERROR:
645 if (remaining >= sizeof line) {
646 rprintf(FERROR, "multiplexing overflow %d:%ld\n\n",
647 tag, (long)remaining);
648 exit_cleanup(RERR_STREAMIO);
649 }
650 read_loop(fd, line, remaining);
651 rwrite((enum logcode)tag, line, remaining);
652 remaining = 0;
653 break;
654 default:
655 rprintf(FERROR, "unexpected tag %d\n", tag);
656 exit_cleanup(RERR_STREAMIO);
657 }
658 }
659
660 if (remaining == 0)
661 io_flush(NORMAL_FLUSH);
662
663 return ret;
664}
665
666
667
668/**
669 * Do a buffered read from @p fd. Don't return until all @p n bytes
670 * have been read. If all @p n can't be read then exit with an
671 * error.
672 **/
673static void readfd(int fd, char *buffer, size_t N)
674{
675 int ret;
676 size_t total = 0;
677
678 while (total < N) {
679 ret = readfd_unbuffered(fd, buffer + total, N-total);
680 total += ret;
681 }
682
683 if (fd == write_batch_monitor_in) {
684 if ((size_t)write(batch_fd, buffer, total) != total)
685 exit_cleanup(RERR_FILEIO);
686 }
687
688 stats.total_read += total;
689}
690
691
692int32 read_int(int f)
693{
694 char b[4];
695 int32 ret;
696
697 readfd(f,b,4);
698 ret = IVAL(b,0);
699 if (ret == (int32)0xffffffff)
700 return -1;
701 return ret;
702}
703
704int64 read_longint(int f)
705{
706 int64 ret;
707 char b[8];
708 ret = read_int(f);
709
710 if ((int32)ret != (int32)0xffffffff)
711 return ret;
712
713#ifdef NO_INT64
714 rprintf(FERROR,"Integer overflow - attempted 64 bit offset\n");
715 exit_cleanup(RERR_UNSUPPORTED);
716#else
717 readfd(f,b,8);
718 ret = IVAL(b,0) | (((int64)IVAL(b,4))<<32);
719#endif
720
721 return ret;
722}
723
724void read_buf(int f,char *buf,size_t len)
725{
726 readfd(f,buf,len);
727}
728
729void read_sbuf(int f,char *buf,size_t len)
730{
731 read_buf(f,buf,len);
732 buf[len] = 0;
733}
734
735unsigned char read_byte(int f)
736{
737 unsigned char c;
738 read_buf(f, (char *)&c, 1);
739 return c;
740}
741
742
743/**
744 * Sleep after writing to limit I/O bandwidth usage.
745 *
746 * @todo Rather than sleeping after each write, it might be better to
747 * use some kind of averaging. The current algorithm seems to always
748 * use a bit less bandwidth than specified, because it doesn't make up
749 * for slow periods. But arguably this is a feature. In addition, we
750 * ought to take the time used to write the data into account.
751 *
752 * During some phases of big transfers (file FOO is uptodate) this is
753 * called with a small bytes_written every time. As the kernel has to
754 * round small waits up to guarantee that we actually wait at least the
755 * requested number of microseconds, this can become grossly inaccurate.
756 * We therefore keep track of the bytes we've written over time and only
757 * sleep when the accumulated delay is at least 1 tenth of a second.
758 **/
759static void sleep_for_bwlimit(int bytes_written)
760{
761 static struct timeval prior_tv;
762 static long total_written = 0;
763 struct timeval tv, start_tv;
764 long elapsed_usec, sleep_usec;
765
766#define ONE_SEC 1000000L /* # of microseconds in a second */
767
768 if (!bwlimit)
769 return;
770
771 total_written += bytes_written;
772
773 gettimeofday(&start_tv, NULL);
774 if (prior_tv.tv_sec) {
775 elapsed_usec = (start_tv.tv_sec - prior_tv.tv_sec) * ONE_SEC
776 + (start_tv.tv_usec - prior_tv.tv_usec);
777 total_written -= elapsed_usec * bwlimit / (ONE_SEC/1024);
778 if (total_written < 0)
779 total_written = 0;
780 }
781
782 sleep_usec = total_written * (ONE_SEC/1024) / bwlimit;
783 if (sleep_usec < ONE_SEC / 10) {
784 prior_tv = start_tv;
785 return;
786 }
787
788 tv.tv_sec = sleep_usec / ONE_SEC;
789 tv.tv_usec = sleep_usec % ONE_SEC;
790 select(0, NULL, NULL, NULL, &tv);
791
792 gettimeofday(&prior_tv, NULL);
793 elapsed_usec = (prior_tv.tv_sec - start_tv.tv_sec) * ONE_SEC
794 + (prior_tv.tv_usec - start_tv.tv_usec);
795 total_written = (sleep_usec - elapsed_usec) * bwlimit / (ONE_SEC/1024);
796}
797
798
799/**
800 * Write len bytes to the file descriptor @p fd.
801 *
802 * This function underlies the multiplexing system. The body of the
803 * application never calls this function directly.
804 **/
805static void writefd_unbuffered(int fd,char *buf,size_t len)
806{
807 size_t n, total = 0;
808 fd_set w_fds, r_fds;
809 int maxfd, count, ret;
810 struct timeval tv;
811
812 if (fd == msg_fd_out) {
813 rprintf(FERROR, "Internal error: wrong write used in receiver.\n");
814 exit_cleanup(RERR_PROTOCOL);
815 }
816
817 no_flush++;
818
819 while (total < len) {
820 FD_ZERO(&w_fds);
821 FD_SET(fd,&w_fds);
822 maxfd = fd;
823
824 if (msg_fd_in >= 0) {
825 FD_ZERO(&r_fds);
826 FD_SET(msg_fd_in,&r_fds);
827 if (msg_fd_in > maxfd)
828 maxfd = msg_fd_in;
829 }
830
831 tv.tv_sec = select_timeout;
832 tv.tv_usec = 0;
833
834 errno = 0;
835 count = select(maxfd + 1, msg_fd_in >= 0 ? &r_fds : NULL,
836 &w_fds, NULL, &tv);
837
838 if (count <= 0) {
839 if (count < 0 && errno == EBADF)
840 exit_cleanup(RERR_SOCKETIO);
841 check_timeout();
842 continue;
843 }
844
845 if (msg_fd_in >= 0 && FD_ISSET(msg_fd_in, &r_fds))
846 read_msg_fd();
847
848 if (!FD_ISSET(fd, &w_fds))
849 continue;
850
851 n = len - total;
852 if (bwlimit && n > bwlimit_writemax)
853 n = bwlimit_writemax;
854 ret = write(fd, buf + total, n);
855
856 if (ret <= 0) {
857 if (ret < 0) {
858 if (errno == EINTR)
859 continue;
860 if (errno == EWOULDBLOCK || errno == EAGAIN) {
861 msleep(1);
862 continue;
863 }
864 }
865
866 /* Don't try to write errors back across the stream. */
867 io_multiplexing_close();
868 rsyserr(FERROR, errno,
869 "writefd_unbuffered failed to write %ld bytes: phase \"%s\"",
870 (long)len, io_write_phase);
871 exit_cleanup(RERR_STREAMIO);
872 }
873
874 sleep_for_bwlimit(ret);
875
876 total += ret;
877
878 if (io_timeout)
879 last_io = time(NULL);
880 }
881
882 no_flush--;
883}
884
885
886static char *io_buffer;
887static int io_buffer_count;
888
889void io_start_buffering_out(int fd)
890{
891 if (io_buffer)
892 return;
893 multiplex_out_fd = fd;
894 io_buffer = new_array(char, IO_BUFFER_SIZE);
895 if (!io_buffer)
896 out_of_memory("writefd");
897 io_buffer_count = 0;
898}
899
900void io_start_buffering_in(int fd)
901{
902 multiplex_in_fd = fd;
903}
904
905/**
906 * Write an message to a multiplexed stream. If this fails then rsync
907 * exits.
908 **/
909static void mplex_write(int fd, enum msgcode code, char *buf, size_t len)
910{
911 char buffer[4096];
912 size_t n = len;
913
914 SIVAL(buffer, 0, ((MPLEX_BASE + (int)code)<<24) + len);
915
916 if (n > sizeof buffer - 4)
917 n = sizeof buffer - 4;
918
919 memcpy(&buffer[4], buf, n);
920 writefd_unbuffered(fd, buffer, n+4);
921
922 len -= n;
923 buf += n;
924
925 if (len)
926 writefd_unbuffered(fd, buf, len);
927}
928
929
930void io_flush(int flush_it_all)
931{
932 int fd = multiplex_out_fd;
933
934 msg_list_push(flush_it_all);
935
936 if (!io_buffer_count || no_flush)
937 return;
938
939 if (io_multiplexing_out)
940 mplex_write(fd, MSG_DATA, io_buffer, io_buffer_count);
941 else
942 writefd_unbuffered(fd, io_buffer, io_buffer_count);
943 io_buffer_count = 0;
944}
945
946
947void io_end_buffering(void)
948{
949 io_flush(NORMAL_FLUSH);
950 if (!io_multiplexing_out) {
951 free(io_buffer);
952 io_buffer = NULL;
953 }
954}
955
956static void writefd(int fd,char *buf,size_t len)
957{
958 stats.total_written += len;
959
960 if (fd == msg_fd_out) {
961 rprintf(FERROR, "Internal error: wrong write used in receiver.\n");
962 exit_cleanup(RERR_PROTOCOL);
963 }
964
965 if (fd == write_batch_monitor_out) {
966 if ((size_t)write(batch_fd, buf, len) != len)
967 exit_cleanup(RERR_FILEIO);
968 }
969
970 if (!io_buffer || fd != multiplex_out_fd) {
971 writefd_unbuffered(fd, buf, len);
972 return;
973 }
974
975 while (len) {
976 int n = MIN((int)len, IO_BUFFER_SIZE-io_buffer_count);
977 if (n > 0) {
978 memcpy(io_buffer+io_buffer_count, buf, n);
979 buf += n;
980 len -= n;
981 io_buffer_count += n;
982 }
983
984 if (io_buffer_count == IO_BUFFER_SIZE)
985 io_flush(NORMAL_FLUSH);
986 }
987}
988
989
990void write_int(int f,int32 x)
991{
992 char b[4];
993 SIVAL(b,0,x);
994 writefd(f,b,4);
995}
996
997
998void write_int_named(int f, int32 x, const char *phase)
999{
1000 io_write_phase = phase;
1001 write_int(f, x);
1002 io_write_phase = phase_unknown;
1003}
1004
1005
1006/*
1007 * Note: int64 may actually be a 32-bit type if ./configure couldn't find any
1008 * 64-bit types on this platform.
1009 */
1010void write_longint(int f, int64 x)
1011{
1012 char b[8];
1013
1014 if (x <= 0x7FFFFFFF) {
1015 write_int(f, (int)x);
1016 return;
1017 }
1018
1019#ifdef NO_INT64
1020 rprintf(FERROR,"Integer overflow - attempted 64 bit offset\n");
1021 exit_cleanup(RERR_UNSUPPORTED);
1022#else
1023 write_int(f, (int32)0xFFFFFFFF);
1024 SIVAL(b,0,(x&0xFFFFFFFF));
1025 SIVAL(b,4,((x>>32)&0xFFFFFFFF));
1026
1027 writefd(f,b,8);
1028#endif
1029}
1030
1031void write_buf(int f,char *buf,size_t len)
1032{
1033 writefd(f,buf,len);
1034}
1035
1036/** Write a string to the connection */
1037static void write_sbuf(int f,char *buf)
1038{
1039 write_buf(f, buf, strlen(buf));
1040}
1041
1042
1043void write_byte(int f,unsigned char c)
1044{
1045 write_buf(f,(char *)&c,1);
1046}
1047
1048
1049
1050/**
1051 * Read a line of up to @p maxlen characters into @p buf (not counting
1052 * the trailing null). Strips the (required) trailing newline and all
1053 * carriage returns.
1054 *
1055 * @return 1 for success; 0 for I/O error or truncation.
1056 **/
1057int read_line(int f, char *buf, size_t maxlen)
1058{
1059 while (maxlen) {
1060 buf[0] = 0;
1061 read_buf(f, buf, 1);
1062 if (buf[0] == 0)
1063 return 0;
1064 if (buf[0] == '\n')
1065 break;
1066 if (buf[0] != '\r') {
1067 buf++;
1068 maxlen--;
1069 }
1070 }
1071 *buf = '\0';
1072 return maxlen > 0;
1073}
1074
1075
1076void io_printf(int fd, const char *format, ...)
1077{
1078 va_list ap;
1079 char buf[1024];
1080 int len;
1081
1082 va_start(ap, format);
1083 len = vsnprintf(buf, sizeof buf, format, ap);
1084 va_end(ap);
1085
1086 if (len < 0)
1087 exit_cleanup(RERR_STREAMIO);
1088
1089 write_sbuf(fd, buf);
1090}
1091
1092
1093/** Setup for multiplexing a MSG_* stream with the data stream. */
1094void io_start_multiplex_out(int fd)
1095{
1096 multiplex_out_fd = fd;
1097 io_flush(NORMAL_FLUSH);
1098 io_start_buffering_out(fd);
1099 io_multiplexing_out = 1;
1100}
1101
1102/** Setup for multiplexing a MSG_* stream with the data stream. */
1103void io_start_multiplex_in(int fd)
1104{
1105 multiplex_in_fd = fd;
1106 io_flush(NORMAL_FLUSH);
1107 io_multiplexing_in = 1;
1108}
1109
1110/** Write an message to the multiplexed data stream. */
1111int io_multiplex_write(enum msgcode code, char *buf, size_t len)
1112{
1113 if (!io_multiplexing_out)
1114 return 0;
1115
1116 io_flush(NORMAL_FLUSH);
1117 stats.total_written += (len+4);
1118 mplex_write(multiplex_out_fd, code, buf, len);
1119 return 1;
1120}
1121
1122/** Stop output multiplexing. */
1123void io_multiplexing_close(void)
1124{
1125 io_multiplexing_out = 0;
1126}
1127
1128void start_write_batch(int fd)
1129{
1130 /* Some communication has already taken place, but we don't
1131 * enable batch writing until here so that we can write a
1132 * canonical record of the communication even though the
1133 * actual communication so far depends on whether a daemon
1134 * is involved. */
1135 write_int(batch_fd, protocol_version);
1136 write_int(batch_fd, checksum_seed);
1137 stats.total_written -= sizeof (int) * 2;
1138
1139 if (am_sender)
1140 write_batch_monitor_out = fd;
1141 else
1142 write_batch_monitor_in = fd;
1143}
1144
1145void stop_write_batch(void)
1146{
1147 write_batch_monitor_out = -1;
1148 write_batch_monitor_in = -1;
1149}