Tweaked the msg_list code so that the head and tail pointers
[rsync/rsync.git] / io.c
... / ...
CommitLineData
1/* -*- c-file-style: "linux" -*-
2 *
3 * Copyright (C) 1996-2001 by Andrew Tridgell
4 * Copyright (C) Paul Mackerras 1996
5 * Copyright (C) 2001, 2002 by Martin Pool <mbp@samba.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22/**
23 * @file io.c
24 *
25 * Socket and pipe I/O utilities used in rsync.
26 *
27 * rsync provides its own multiplexing system, which is used to send
28 * stderr and stdout over a single socket. We need this because
29 * stdout normally carries the binary data stream, and stderr all our
30 * error messages.
31 *
32 * For historical reasons this is off during the start of the
33 * connection, but it's switched on quite early using
34 * io_start_multiplex_out() and io_start_multiplex_in().
35 **/
36
37#include "rsync.h"
38
39/** If no timeout is specified then use a 60 second select timeout */
40#define SELECT_TIMEOUT 60
41
42extern int bwlimit;
43extern size_t bwlimit_writemax;
44extern int verbose;
45extern int io_timeout;
46extern int allowed_lull;
47extern int am_server;
48extern int am_daemon;
49extern int am_sender;
50extern int am_generator;
51extern int eol_nulls;
52extern int read_batch;
53extern int csum_length;
54extern int checksum_seed;
55extern int protocol_version;
56extern int remove_sent_files;
57extern int preserve_hard_links;
58extern char *filesfrom_host;
59extern struct stats stats;
60extern struct file_list *the_file_list;
61
62const char phase_unknown[] = "unknown";
63int ignore_timeout = 0;
64int batch_fd = -1;
65int batch_gen_fd = -1;
66
67/**
68 * The connection might be dropped at some point; perhaps because the
69 * remote instance crashed. Just giving the offset on the stream is
70 * not very helpful. So instead we try to make io_phase_name point to
71 * something useful.
72 *
73 * For buffered/multiplexed I/O these names will be somewhat
74 * approximate; perhaps for ease of support we would rather make the
75 * buffer always flush when a single application-level I/O finishes.
76 *
77 * @todo Perhaps we want some simple stack functionality, but there's
78 * no need to overdo it.
79 **/
80const char *io_write_phase = phase_unknown;
81const char *io_read_phase = phase_unknown;
82
83/* Ignore an EOF error if non-zero. See whine_about_eof(). */
84int kluge_around_eof = 0;
85
86int msg_fd_in = -1;
87int msg_fd_out = -1;
88int sock_f_in = -1;
89int sock_f_out = -1;
90
91static int io_multiplexing_out;
92static int io_multiplexing_in;
93static time_t last_io_in;
94static time_t last_io_out;
95static int no_flush;
96
97static int write_batch_monitor_in = -1;
98static int write_batch_monitor_out = -1;
99
100static int io_filesfrom_f_in = -1;
101static int io_filesfrom_f_out = -1;
102static char io_filesfrom_buf[2048];
103static char *io_filesfrom_bp;
104static char io_filesfrom_lastchar;
105static int io_filesfrom_buflen;
106static size_t contiguous_write_len = 0;
107static int select_timeout = SELECT_TIMEOUT;
108
109static void read_loop(int fd, char *buf, size_t len);
110
111struct flist_ndx_item {
112 struct flist_ndx_item *next;
113 int ndx;
114};
115
116struct flist_ndx_list {
117 struct flist_ndx_item *head, *tail;
118};
119
120static struct flist_ndx_list redo_list, hlink_list;
121
122struct msg_list_item {
123 struct msg_list_item *next;
124 char *buf;
125 int len;
126};
127
128struct msg_list {
129 struct msg_list_item *head, *tail;
130};
131
132static struct msg_list msg_list;
133
134static void flist_ndx_push(struct flist_ndx_list *lp, int ndx)
135{
136 struct flist_ndx_item *item;
137
138 if (!(item = new(struct flist_ndx_item)))
139 out_of_memory("flist_ndx_push");
140 item->next = NULL;
141 item->ndx = ndx;
142 if (lp->tail)
143 lp->tail->next = item;
144 else
145 lp->head = item;
146 lp->tail = item;
147}
148
149static int flist_ndx_pop(struct flist_ndx_list *lp)
150{
151 struct flist_ndx_item *next;
152 int ndx;
153
154 if (!lp->head)
155 return -1;
156
157 ndx = lp->head->ndx;
158 next = lp->head->next;
159 free(lp->head);
160 lp->head = next;
161 if (!next)
162 lp->tail = NULL;
163
164 return ndx;
165}
166
167static void check_timeout(void)
168{
169 time_t t;
170
171 if (!io_timeout || ignore_timeout)
172 return;
173
174 if (!last_io_in) {
175 last_io_in = time(NULL);
176 return;
177 }
178
179 t = time(NULL);
180
181 if (t - last_io_in >= io_timeout) {
182 if (!am_server && !am_daemon) {
183 rprintf(FERROR, "io timeout after %d seconds -- exiting\n",
184 (int)(t-last_io_in));
185 }
186 exit_cleanup(RERR_TIMEOUT);
187 }
188}
189
190/* Note the fds used for the main socket (which might really be a pipe
191 * for a local transfer, but we can ignore that). */
192void io_set_sock_fds(int f_in, int f_out)
193{
194 sock_f_in = f_in;
195 sock_f_out = f_out;
196}
197
198void set_io_timeout(int secs)
199{
200 io_timeout = secs;
201
202 if (!io_timeout || io_timeout > SELECT_TIMEOUT)
203 select_timeout = SELECT_TIMEOUT;
204 else
205 select_timeout = io_timeout;
206
207 allowed_lull = read_batch ? 0 : (io_timeout + 1) / 2;
208}
209
210/* Setup the fd used to receive MSG_* messages. Only needed during the
211 * early stages of being a local sender (up through the sending of the
212 * file list) or when we're the generator (to fetch the messages from
213 * the receiver). */
214void set_msg_fd_in(int fd)
215{
216 msg_fd_in = fd;
217}
218
219/* Setup the fd used to send our MSG_* messages. Only needed when
220 * we're the receiver (to send our messages to the generator). */
221void set_msg_fd_out(int fd)
222{
223 msg_fd_out = fd;
224 set_nonblocking(msg_fd_out);
225}
226
227/* Add a message to the pending MSG_* list. */
228static void msg_list_add(int code, char *buf, int len)
229{
230 struct msg_list_item *ml;
231
232 if (!(ml = new(struct msg_list_item)))
233 out_of_memory("msg_list_add");
234 ml->next = NULL;
235 if (!(ml->buf = new_array(char, len+4)))
236 out_of_memory("msg_list_add");
237 SIVAL(ml->buf, 0, ((code+MPLEX_BASE)<<24) | len);
238 memcpy(ml->buf+4, buf, len);
239 ml->len = len+4;
240 if (msg_list.tail)
241 msg_list.tail->next = ml;
242 else
243 msg_list.head = ml;
244 msg_list.tail = ml;
245}
246
247void send_msg(enum msgcode code, char *buf, int len)
248{
249 if (msg_fd_out < 0) {
250 io_multiplex_write(code, buf, len);
251 return;
252 }
253 msg_list_add(code, buf, len);
254 msg_list_push(NORMAL_FLUSH);
255}
256
257/* Read a message from the MSG_* fd and handle it. This is called either
258 * during the early stages of being a local sender (up through the sending
259 * of the file list) or when we're the generator (to fetch the messages
260 * from the receiver). */
261static void read_msg_fd(void)
262{
263 char buf[2048];
264 size_t n;
265 int fd = msg_fd_in;
266 int tag, len;
267
268 /* Temporarily disable msg_fd_in. This is needed to avoid looping back
269 * to this routine from writefd_unbuffered(). */
270 msg_fd_in = -1;
271
272 read_loop(fd, buf, 4);
273 tag = IVAL(buf, 0);
274
275 len = tag & 0xFFFFFF;
276 tag = (tag >> 24) - MPLEX_BASE;
277
278 switch (tag) {
279 case MSG_DONE:
280 if (len != 0 || !am_generator) {
281 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
282 exit_cleanup(RERR_STREAMIO);
283 }
284 flist_ndx_push(&redo_list, -1);
285 break;
286 case MSG_REDO:
287 if (len != 4 || !am_generator) {
288 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
289 exit_cleanup(RERR_STREAMIO);
290 }
291 read_loop(fd, buf, 4);
292 flist_ndx_push(&redo_list, IVAL(buf,0));
293 break;
294 case MSG_DELETED:
295 if (len >= (int)sizeof buf || !am_generator) {
296 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
297 exit_cleanup(RERR_STREAMIO);
298 }
299 read_loop(fd, buf, len);
300 io_multiplex_write(MSG_DELETED, buf, len);
301 break;
302 case MSG_SUCCESS:
303 if (len != 4 || !am_generator) {
304 rprintf(FERROR, "invalid message %d:%d\n", tag, len);
305 exit_cleanup(RERR_STREAMIO);
306 }
307 read_loop(fd, buf, len);
308 if (remove_sent_files)
309 io_multiplex_write(MSG_SUCCESS, buf, len);
310 if (preserve_hard_links)
311 flist_ndx_push(&hlink_list, IVAL(buf,0));
312 break;
313 case MSG_INFO:
314 case MSG_ERROR:
315 case MSG_LOG:
316 while (len) {
317 n = len;
318 if (n >= sizeof buf)
319 n = sizeof buf - 1;
320 read_loop(fd, buf, n);
321 rwrite((enum logcode)tag, buf, n);
322 len -= n;
323 }
324 break;
325 default:
326 rprintf(FERROR, "unknown message %d:%d\n", tag, len);
327 exit_cleanup(RERR_STREAMIO);
328 }
329
330 msg_fd_in = fd;
331}
332
333/* Try to push messages off the list onto the wire. If we leave with more
334 * to do, return 0. On error, return -1. If everything flushed, return 1.
335 * This is only active in the receiver. */
336int msg_list_push(int flush_it_all)
337{
338 static int written = 0;
339 struct timeval tv;
340 fd_set fds;
341
342 if (msg_fd_out < 0)
343 return -1;
344
345 while (msg_list.head) {
346 struct msg_list_item *ml = msg_list.head;
347 int n = write(msg_fd_out, ml->buf + written, ml->len - written);
348 if (n < 0) {
349 if (errno == EINTR)
350 continue;
351 if (errno != EWOULDBLOCK && errno != EAGAIN)
352 return -1;
353 if (!flush_it_all)
354 return 0;
355 FD_ZERO(&fds);
356 FD_SET(msg_fd_out, &fds);
357 tv.tv_sec = select_timeout;
358 tv.tv_usec = 0;
359 if (!select(msg_fd_out+1, NULL, &fds, NULL, &tv))
360 check_timeout();
361 } else if ((written += n) == ml->len) {
362 free(ml->buf);
363 msg_list.head = ml->next;
364 if (!msg_list.head)
365 msg_list.tail = NULL;
366 free(ml);
367 written = 0;
368 }
369 }
370 return 1;
371}
372
373int get_redo_num(int itemizing, enum logcode code)
374{
375 while (1) {
376 if (hlink_list.head)
377 check_for_finished_hlinks(itemizing, code);
378 if (redo_list.head)
379 break;
380 read_msg_fd();
381 }
382
383 return flist_ndx_pop(&redo_list);
384}
385
386int get_hlink_num(void)
387{
388 return flist_ndx_pop(&hlink_list);
389}
390
391/**
392 * When we're the receiver and we have a local --files-from list of names
393 * that needs to be sent over the socket to the sender, we have to do two
394 * things at the same time: send the sender a list of what files we're
395 * processing and read the incoming file+info list from the sender. We do
396 * this by augmenting the read_timeout() function to copy this data. It
397 * uses the io_filesfrom_buf to read a block of data from f_in (when it is
398 * ready, since it might be a pipe) and then blast it out f_out (when it
399 * is ready to receive more data).
400 */
401void io_set_filesfrom_fds(int f_in, int f_out)
402{
403 io_filesfrom_f_in = f_in;
404 io_filesfrom_f_out = f_out;
405 io_filesfrom_bp = io_filesfrom_buf;
406 io_filesfrom_lastchar = '\0';
407 io_filesfrom_buflen = 0;
408}
409
410/* It's almost always an error to get an EOF when we're trying to read from the
411 * network, because the protocol is (for the most part) self-terminating.
412 *
413 * There is one case for the receiver when it is at the end of the transfer
414 * (hanging around reading any keep-alive packets that might come its way): if
415 * the sender dies before the generator's kill-signal comes through, we can end
416 * up here needing to loop until the kill-signal arrives. In this situation,
417 * kluge_around_eof will be < 0.
418 *
419 * There is another case for older protocol versions (< 24) where the module
420 * listing was not terminated, so we must ignore an EOF error in that case and
421 * exit. In this situation, kluge_around_eof will be > 0. */
422static void whine_about_eof(int fd)
423{
424 if (kluge_around_eof && fd == sock_f_in) {
425 int i;
426 if (kluge_around_eof > 0)
427 exit_cleanup(0);
428 /* If we're still here after 10 seconds, exit with an error. */
429 for (i = 10*1000/20; i--; )
430 msleep(20);
431 }
432
433 rprintf(FERROR, RSYNC_NAME ": connection unexpectedly closed "
434 "(%.0f bytes received so far) [%s]\n",
435 (double)stats.total_read, who_am_i());
436
437 exit_cleanup(RERR_STREAMIO);
438}
439
440
441/**
442 * Read from a socket with I/O timeout. return the number of bytes
443 * read. If no bytes can be read then exit, never return a number <= 0.
444 *
445 * TODO: If the remote shell connection fails, then current versions
446 * actually report an "unexpected EOF" error here. Since it's a
447 * fairly common mistake to try to use rsh when ssh is required, we
448 * should trap that: if we fail to read any data at all, we should
449 * give a better explanation. We can tell whether the connection has
450 * started by looking e.g. at whether the remote version is known yet.
451 */
452static int read_timeout(int fd, char *buf, size_t len)
453{
454 int n, ret = 0;
455
456 io_flush(NORMAL_FLUSH);
457
458 while (ret == 0) {
459 /* until we manage to read *something* */
460 fd_set r_fds, w_fds;
461 struct timeval tv;
462 int maxfd = fd;
463 int count;
464
465 FD_ZERO(&r_fds);
466 FD_ZERO(&w_fds);
467 FD_SET(fd, &r_fds);
468 if (msg_list.head) {
469 FD_SET(msg_fd_out, &w_fds);
470 if (msg_fd_out > maxfd)
471 maxfd = msg_fd_out;
472 }
473 if (io_filesfrom_f_out >= 0) {
474 int new_fd;
475 if (io_filesfrom_buflen == 0) {
476 if (io_filesfrom_f_in >= 0) {
477 FD_SET(io_filesfrom_f_in, &r_fds);
478 new_fd = io_filesfrom_f_in;
479 } else {
480 io_filesfrom_f_out = -1;
481 new_fd = -1;
482 }
483 } else {
484 FD_SET(io_filesfrom_f_out, &w_fds);
485 new_fd = io_filesfrom_f_out;
486 }
487 if (new_fd > maxfd)
488 maxfd = new_fd;
489 }
490
491 tv.tv_sec = select_timeout;
492 tv.tv_usec = 0;
493
494 errno = 0;
495
496 count = select(maxfd + 1, &r_fds, &w_fds, NULL, &tv);
497
498 if (count <= 0) {
499 if (errno == EBADF)
500 exit_cleanup(RERR_SOCKETIO);
501 check_timeout();
502 continue;
503 }
504
505 if (msg_list.head && FD_ISSET(msg_fd_out, &w_fds))
506 msg_list_push(NORMAL_FLUSH);
507
508 if (io_filesfrom_f_out >= 0) {
509 if (io_filesfrom_buflen) {
510 if (FD_ISSET(io_filesfrom_f_out, &w_fds)) {
511 int l = write(io_filesfrom_f_out,
512 io_filesfrom_bp,
513 io_filesfrom_buflen);
514 if (l > 0) {
515 if (!(io_filesfrom_buflen -= l))
516 io_filesfrom_bp = io_filesfrom_buf;
517 else
518 io_filesfrom_bp += l;
519 } else {
520 /* XXX should we complain? */
521 io_filesfrom_f_out = -1;
522 }
523 }
524 } else if (io_filesfrom_f_in >= 0) {
525 if (FD_ISSET(io_filesfrom_f_in, &r_fds)) {
526 int l = read(io_filesfrom_f_in,
527 io_filesfrom_buf,
528 sizeof io_filesfrom_buf);
529 if (l <= 0) {
530 /* Send end-of-file marker */
531 io_filesfrom_buf[0] = '\0';
532 io_filesfrom_buf[1] = '\0';
533 io_filesfrom_buflen = io_filesfrom_lastchar? 2 : 1;
534 io_filesfrom_f_in = -1;
535 } else {
536 if (!eol_nulls) {
537 char *s = io_filesfrom_buf + l;
538 /* Transform CR and/or LF into '\0' */
539 while (s-- > io_filesfrom_buf) {
540 if (*s == '\n' || *s == '\r')
541 *s = '\0';
542 }
543 }
544 if (!io_filesfrom_lastchar) {
545 /* Last buf ended with a '\0', so don't
546 * let this buf start with one. */
547 while (l && !*io_filesfrom_bp)
548 io_filesfrom_bp++, l--;
549 }
550 if (!l)
551 io_filesfrom_bp = io_filesfrom_buf;
552 else {
553 char *f = io_filesfrom_bp;
554 char *t = f;
555 char *eob = f + l;
556 /* Eliminate any multi-'\0' runs. */
557 while (f != eob) {
558 if (!(*t++ = *f++)) {
559 while (f != eob && !*f)
560 f++, l--;
561 }
562 }
563 io_filesfrom_lastchar = f[-1];
564 }
565 io_filesfrom_buflen = l;
566 }
567 }
568 }
569 }
570
571 if (!FD_ISSET(fd, &r_fds))
572 continue;
573
574 n = read(fd, buf, len);
575
576 if (n <= 0) {
577 if (n == 0)
578 whine_about_eof(fd); /* Doesn't return. */
579 if (errno == EINTR || errno == EWOULDBLOCK
580 || errno == EAGAIN)
581 continue;
582
583 /* Don't write errors on a dead socket. */
584 if (fd == sock_f_in)
585 close_multiplexing_out();
586 rsyserr(FERROR, errno, "read error");
587 exit_cleanup(RERR_STREAMIO);
588 }
589
590 buf += n;
591 len -= n;
592 ret += n;
593
594 if (fd == sock_f_in && io_timeout)
595 last_io_in = time(NULL);
596 }
597
598 return ret;
599}
600
601/**
602 * Read a line into the "fname" buffer (which must be at least MAXPATHLEN
603 * characters long).
604 */
605int read_filesfrom_line(int fd, char *fname)
606{
607 char ch, *s, *eob = fname + MAXPATHLEN - 1;
608 int cnt;
609 int reading_remotely = filesfrom_host != NULL;
610 int nulls = eol_nulls || reading_remotely;
611
612 start:
613 s = fname;
614 while (1) {
615 cnt = read(fd, &ch, 1);
616 if (cnt < 0 && (errno == EWOULDBLOCK
617 || errno == EINTR || errno == EAGAIN)) {
618 struct timeval tv;
619 fd_set fds;
620 FD_ZERO(&fds);
621 FD_SET(fd, &fds);
622 tv.tv_sec = select_timeout;
623 tv.tv_usec = 0;
624 if (!select(fd+1, &fds, NULL, NULL, &tv))
625 check_timeout();
626 continue;
627 }
628 if (cnt != 1)
629 break;
630 if (nulls? !ch : (ch == '\r' || ch == '\n')) {
631 /* Skip empty lines if reading locally. */
632 if (!reading_remotely && s == fname)
633 continue;
634 break;
635 }
636 if (s < eob)
637 *s++ = ch;
638 }
639 *s = '\0';
640
641 /* Dump comments. */
642 if (*fname == '#' || *fname == ';')
643 goto start;
644
645 return s - fname;
646}
647
648
649static char *iobuf_out;
650static int iobuf_out_cnt;
651
652void io_start_buffering_out(void)
653{
654 if (iobuf_out)
655 return;
656 if (!(iobuf_out = new_array(char, IO_BUFFER_SIZE)))
657 out_of_memory("io_start_buffering_out");
658 iobuf_out_cnt = 0;
659}
660
661
662static char *iobuf_in;
663static size_t iobuf_in_siz;
664
665void io_start_buffering_in(void)
666{
667 if (iobuf_in)
668 return;
669 iobuf_in_siz = 2 * IO_BUFFER_SIZE;
670 if (!(iobuf_in = new_array(char, iobuf_in_siz)))
671 out_of_memory("io_start_buffering_in");
672}
673
674
675void io_end_buffering(void)
676{
677 io_flush(NORMAL_FLUSH);
678 if (!io_multiplexing_out) {
679 free(iobuf_out);
680 iobuf_out = NULL;
681 }
682}
683
684
685void maybe_flush_socket(void)
686{
687 if (iobuf_out && iobuf_out_cnt && time(NULL) - last_io_out >= 5)
688 io_flush(NORMAL_FLUSH);
689}
690
691
692void maybe_send_keepalive(void)
693{
694 if (time(NULL) - last_io_out >= allowed_lull) {
695 if (!iobuf_out || !iobuf_out_cnt) {
696 if (protocol_version < 29)
697 return; /* there's nothing we can do */
698 write_int(sock_f_out, the_file_list->count);
699 write_shortint(sock_f_out, ITEM_IS_NEW);
700 }
701 if (iobuf_out)
702 io_flush(NORMAL_FLUSH);
703 }
704}
705
706
707/**
708 * Continue trying to read len bytes - don't return until len has been
709 * read.
710 **/
711static void read_loop(int fd, char *buf, size_t len)
712{
713 while (len) {
714 int n = read_timeout(fd, buf, len);
715
716 buf += n;
717 len -= n;
718 }
719}
720
721
722/**
723 * Read from the file descriptor handling multiplexing - return number
724 * of bytes read.
725 *
726 * Never returns <= 0.
727 */
728static int readfd_unbuffered(int fd, char *buf, size_t len)
729{
730 static size_t remaining;
731 static size_t iobuf_in_ndx;
732 size_t msg_bytes;
733 int tag, ret = 0;
734 char line[BIGPATHBUFLEN];
735
736 if (!iobuf_in || fd != sock_f_in)
737 return read_timeout(fd, buf, len);
738
739 if (!io_multiplexing_in && remaining == 0) {
740 remaining = read_timeout(fd, iobuf_in, iobuf_in_siz);
741 iobuf_in_ndx = 0;
742 }
743
744 while (ret == 0) {
745 if (remaining) {
746 len = MIN(len, remaining);
747 memcpy(buf, iobuf_in + iobuf_in_ndx, len);
748 iobuf_in_ndx += len;
749 remaining -= len;
750 ret = len;
751 break;
752 }
753
754 read_loop(fd, line, 4);
755 tag = IVAL(line, 0);
756
757 msg_bytes = tag & 0xFFFFFF;
758 tag = (tag >> 24) - MPLEX_BASE;
759
760 switch (tag) {
761 case MSG_DATA:
762 if (msg_bytes > iobuf_in_siz) {
763 if (!(iobuf_in = realloc_array(iobuf_in, char,
764 msg_bytes)))
765 out_of_memory("readfd_unbuffered");
766 iobuf_in_siz = msg_bytes;
767 }
768 read_loop(fd, iobuf_in, msg_bytes);
769 remaining = msg_bytes;
770 iobuf_in_ndx = 0;
771 break;
772 case MSG_DELETED:
773 if (msg_bytes >= sizeof line)
774 goto overflow;
775 read_loop(fd, line, msg_bytes);
776 line[msg_bytes] = '\0';
777 /* A directory name was sent with the trailing null */
778 if (msg_bytes > 0 && !line[msg_bytes-1])
779 log_delete(line, S_IFDIR);
780 else
781 log_delete(line, S_IFREG);
782 break;
783 case MSG_SUCCESS:
784 if (msg_bytes != 4) {
785 rprintf(FERROR, "invalid multi-message %d:%ld [%s]\n",
786 tag, (long)msg_bytes, who_am_i());
787 exit_cleanup(RERR_STREAMIO);
788 }
789 read_loop(fd, line, msg_bytes);
790 successful_send(IVAL(line, 0));
791 break;
792 case MSG_INFO:
793 case MSG_ERROR:
794 if (msg_bytes >= sizeof line) {
795 overflow:
796 rprintf(FERROR,
797 "multiplexing overflow %d:%ld [%s]\n",
798 tag, (long)msg_bytes, who_am_i());
799 exit_cleanup(RERR_STREAMIO);
800 }
801 read_loop(fd, line, msg_bytes);
802 rwrite((enum logcode)tag, line, msg_bytes);
803 break;
804 default:
805 rprintf(FERROR, "unexpected tag %d [%s]\n",
806 tag, who_am_i());
807 exit_cleanup(RERR_STREAMIO);
808 }
809 }
810
811 if (remaining == 0)
812 io_flush(NORMAL_FLUSH);
813
814 return ret;
815}
816
817
818
819/**
820 * Do a buffered read from @p fd. Don't return until all @p n bytes
821 * have been read. If all @p n can't be read then exit with an
822 * error.
823 **/
824static void readfd(int fd, char *buffer, size_t N)
825{
826 int ret;
827 size_t total = 0;
828
829 while (total < N) {
830 ret = readfd_unbuffered(fd, buffer + total, N-total);
831 total += ret;
832 }
833
834 if (fd == write_batch_monitor_in) {
835 if ((size_t)write(batch_fd, buffer, total) != total)
836 exit_cleanup(RERR_FILEIO);
837 }
838
839 if (fd == sock_f_in)
840 stats.total_read += total;
841}
842
843
844int read_shortint(int f)
845{
846 uchar b[2];
847 readfd(f, (char *)b, 2);
848 return (b[1] << 8) + b[0];
849}
850
851
852int32 read_int(int f)
853{
854 char b[4];
855 int32 ret;
856
857 readfd(f,b,4);
858 ret = IVAL(b,0);
859 if (ret == (int32)0xffffffff)
860 return -1;
861 return ret;
862}
863
864int64 read_longint(int f)
865{
866 int64 ret;
867 char b[8];
868 ret = read_int(f);
869
870 if ((int32)ret != (int32)0xffffffff)
871 return ret;
872
873#if SIZEOF_INT64 < 8
874 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
875 exit_cleanup(RERR_UNSUPPORTED);
876#else
877 readfd(f,b,8);
878 ret = IVAL(b,0) | (((int64)IVAL(b,4))<<32);
879#endif
880
881 return ret;
882}
883
884void read_buf(int f,char *buf,size_t len)
885{
886 readfd(f,buf,len);
887}
888
889void read_sbuf(int f,char *buf,size_t len)
890{
891 readfd(f, buf, len);
892 buf[len] = '\0';
893}
894
895uchar read_byte(int f)
896{
897 uchar c;
898 readfd(f, (char *)&c, 1);
899 return c;
900}
901
902int read_vstring(int f, char *buf, int bufsize)
903{
904 int len = read_byte(f);
905
906 if (len & 0x80)
907 len = (len & ~0x80) * 0x100 + read_byte(f);
908
909 if (len >= bufsize) {
910 rprintf(FERROR, "over-long vstring received (%d > %d)\n",
911 len, bufsize - 1);
912 return -1;
913 }
914
915 if (len)
916 readfd(f, buf, len);
917 buf[len] = '\0';
918 return len;
919}
920
921/* Populate a sum_struct with values from the socket. This is
922 * called by both the sender and the receiver. */
923void read_sum_head(int f, struct sum_struct *sum)
924{
925 sum->count = read_int(f);
926 sum->blength = read_int(f);
927 if (sum->blength < 0 || sum->blength > MAX_BLOCK_SIZE) {
928 rprintf(FERROR, "Invalid block length %ld [%s]\n",
929 (long)sum->blength, who_am_i());
930 exit_cleanup(RERR_PROTOCOL);
931 }
932 sum->s2length = protocol_version < 27 ? csum_length : (int)read_int(f);
933 if (sum->s2length < 0 || sum->s2length > MD4_SUM_LENGTH) {
934 rprintf(FERROR, "Invalid checksum length %d [%s]\n",
935 sum->s2length, who_am_i());
936 exit_cleanup(RERR_PROTOCOL);
937 }
938 sum->remainder = read_int(f);
939 if (sum->remainder < 0 || sum->remainder > sum->blength) {
940 rprintf(FERROR, "Invalid remainder length %ld [%s]\n",
941 (long)sum->remainder, who_am_i());
942 exit_cleanup(RERR_PROTOCOL);
943 }
944}
945
946/* Send the values from a sum_struct over the socket. Set sum to
947 * NULL if there are no checksums to send. This is called by both
948 * the generator and the sender. */
949void write_sum_head(int f, struct sum_struct *sum)
950{
951 static struct sum_struct null_sum;
952
953 if (sum == NULL)
954 sum = &null_sum;
955
956 write_int(f, sum->count);
957 write_int(f, sum->blength);
958 if (protocol_version >= 27)
959 write_int(f, sum->s2length);
960 write_int(f, sum->remainder);
961}
962
963
964/**
965 * Sleep after writing to limit I/O bandwidth usage.
966 *
967 * @todo Rather than sleeping after each write, it might be better to
968 * use some kind of averaging. The current algorithm seems to always
969 * use a bit less bandwidth than specified, because it doesn't make up
970 * for slow periods. But arguably this is a feature. In addition, we
971 * ought to take the time used to write the data into account.
972 *
973 * During some phases of big transfers (file FOO is uptodate) this is
974 * called with a small bytes_written every time. As the kernel has to
975 * round small waits up to guarantee that we actually wait at least the
976 * requested number of microseconds, this can become grossly inaccurate.
977 * We therefore keep track of the bytes we've written over time and only
978 * sleep when the accumulated delay is at least 1 tenth of a second.
979 **/
980static void sleep_for_bwlimit(int bytes_written)
981{
982 static struct timeval prior_tv;
983 static long total_written = 0;
984 struct timeval tv, start_tv;
985 long elapsed_usec, sleep_usec;
986
987#define ONE_SEC 1000000L /* # of microseconds in a second */
988
989 if (!bwlimit)
990 return;
991
992 total_written += bytes_written;
993
994 gettimeofday(&start_tv, NULL);
995 if (prior_tv.tv_sec) {
996 elapsed_usec = (start_tv.tv_sec - prior_tv.tv_sec) * ONE_SEC
997 + (start_tv.tv_usec - prior_tv.tv_usec);
998 total_written -= elapsed_usec * bwlimit / (ONE_SEC/1024);
999 if (total_written < 0)
1000 total_written = 0;
1001 }
1002
1003 sleep_usec = total_written * (ONE_SEC/1024) / bwlimit;
1004 if (sleep_usec < ONE_SEC / 10) {
1005 prior_tv = start_tv;
1006 return;
1007 }
1008
1009 tv.tv_sec = sleep_usec / ONE_SEC;
1010 tv.tv_usec = sleep_usec % ONE_SEC;
1011 select(0, NULL, NULL, NULL, &tv);
1012
1013 gettimeofday(&prior_tv, NULL);
1014 elapsed_usec = (prior_tv.tv_sec - start_tv.tv_sec) * ONE_SEC
1015 + (prior_tv.tv_usec - start_tv.tv_usec);
1016 total_written = (sleep_usec - elapsed_usec) * bwlimit / (ONE_SEC/1024);
1017}
1018
1019
1020/* Write len bytes to the file descriptor fd, looping as necessary to get
1021 * the job done and also (in certain circumstances) reading any data on
1022 * msg_fd_in to avoid deadlock.
1023 *
1024 * This function underlies the multiplexing system. The body of the
1025 * application never calls this function directly. */
1026static void writefd_unbuffered(int fd,char *buf,size_t len)
1027{
1028 size_t n, total = 0;
1029 fd_set w_fds, r_fds;
1030 int maxfd, count, ret, using_r_fds;
1031 struct timeval tv;
1032
1033 no_flush++;
1034
1035 while (total < len) {
1036 FD_ZERO(&w_fds);
1037 FD_SET(fd,&w_fds);
1038 maxfd = fd;
1039
1040 if (msg_fd_in >= 0 && len-total >= contiguous_write_len) {
1041 FD_ZERO(&r_fds);
1042 FD_SET(msg_fd_in,&r_fds);
1043 if (msg_fd_in > maxfd)
1044 maxfd = msg_fd_in;
1045 using_r_fds = 1;
1046 } else
1047 using_r_fds = 0;
1048
1049 tv.tv_sec = select_timeout;
1050 tv.tv_usec = 0;
1051
1052 errno = 0;
1053 count = select(maxfd + 1, using_r_fds ? &r_fds : NULL,
1054 &w_fds, NULL, &tv);
1055
1056 if (count <= 0) {
1057 if (count < 0 && errno == EBADF)
1058 exit_cleanup(RERR_SOCKETIO);
1059 check_timeout();
1060 continue;
1061 }
1062
1063 if (using_r_fds && FD_ISSET(msg_fd_in, &r_fds))
1064 read_msg_fd();
1065
1066 if (!FD_ISSET(fd, &w_fds))
1067 continue;
1068
1069 n = len - total;
1070 if (bwlimit && n > bwlimit_writemax)
1071 n = bwlimit_writemax;
1072 ret = write(fd, buf + total, n);
1073
1074 if (ret <= 0) {
1075 if (ret < 0) {
1076 if (errno == EINTR)
1077 continue;
1078 if (errno == EWOULDBLOCK || errno == EAGAIN) {
1079 msleep(1);
1080 continue;
1081 }
1082 }
1083
1084 /* Don't try to write errors back across the stream. */
1085 if (fd == sock_f_out)
1086 close_multiplexing_out();
1087 rsyserr(FERROR, errno,
1088 "writefd_unbuffered failed to write %ld bytes: phase \"%s\" [%s]",
1089 (long)len, io_write_phase, who_am_i());
1090 /* If the other side is sending us error messages, try
1091 * to grab any messages they sent before they died. */
1092 while (fd == sock_f_out && io_multiplexing_in) {
1093 set_io_timeout(30);
1094 ignore_timeout = 0;
1095 readfd_unbuffered(sock_f_in, io_filesfrom_buf,
1096 sizeof io_filesfrom_buf);
1097 }
1098 exit_cleanup(RERR_STREAMIO);
1099 }
1100
1101 total += ret;
1102
1103 if (fd == sock_f_out) {
1104 if (io_timeout || am_generator)
1105 last_io_out = time(NULL);
1106 sleep_for_bwlimit(ret);
1107 }
1108 }
1109
1110 no_flush--;
1111}
1112
1113
1114/**
1115 * Write an message to a multiplexed stream. If this fails then rsync
1116 * exits.
1117 **/
1118static void mplex_write(enum msgcode code, char *buf, size_t len)
1119{
1120 char buffer[BIGPATHBUFLEN];
1121 size_t n = len;
1122
1123 SIVAL(buffer, 0, ((MPLEX_BASE + (int)code)<<24) + len);
1124
1125 /* When the generator reads messages from the msg_fd_in pipe, it can
1126 * cause output to occur down the socket. Setting contiguous_write_len
1127 * prevents the reading of msg_fd_in once we actually start to write
1128 * this sequence of data (though we might read it before the start). */
1129 if (am_generator && msg_fd_in >= 0)
1130 contiguous_write_len = len + 4;
1131
1132 if (n > sizeof buffer - 4)
1133 n = sizeof buffer - 4;
1134
1135 memcpy(&buffer[4], buf, n);
1136 writefd_unbuffered(sock_f_out, buffer, n+4);
1137
1138 len -= n;
1139 buf += n;
1140
1141 if (len)
1142 writefd_unbuffered(sock_f_out, buf, len);
1143
1144 if (am_generator && msg_fd_in >= 0)
1145 contiguous_write_len = 0;
1146}
1147
1148
1149void io_flush(int flush_it_all)
1150{
1151 msg_list_push(flush_it_all);
1152
1153 if (!iobuf_out_cnt || no_flush)
1154 return;
1155
1156 if (io_multiplexing_out)
1157 mplex_write(MSG_DATA, iobuf_out, iobuf_out_cnt);
1158 else
1159 writefd_unbuffered(sock_f_out, iobuf_out, iobuf_out_cnt);
1160 iobuf_out_cnt = 0;
1161}
1162
1163
1164static void writefd(int fd,char *buf,size_t len)
1165{
1166 if (fd == msg_fd_out) {
1167 rprintf(FERROR, "Internal error: wrong write used in receiver.\n");
1168 exit_cleanup(RERR_PROTOCOL);
1169 }
1170
1171 if (fd == sock_f_out)
1172 stats.total_written += len;
1173
1174 if (fd == write_batch_monitor_out) {
1175 if ((size_t)write(batch_fd, buf, len) != len)
1176 exit_cleanup(RERR_FILEIO);
1177 }
1178
1179 if (!iobuf_out || fd != sock_f_out) {
1180 writefd_unbuffered(fd, buf, len);
1181 return;
1182 }
1183
1184 while (len) {
1185 int n = MIN((int)len, IO_BUFFER_SIZE - iobuf_out_cnt);
1186 if (n > 0) {
1187 memcpy(iobuf_out+iobuf_out_cnt, buf, n);
1188 buf += n;
1189 len -= n;
1190 iobuf_out_cnt += n;
1191 }
1192
1193 if (iobuf_out_cnt == IO_BUFFER_SIZE)
1194 io_flush(NORMAL_FLUSH);
1195 }
1196}
1197
1198
1199void write_shortint(int f, int x)
1200{
1201 uchar b[2];
1202 b[0] = x;
1203 b[1] = x >> 8;
1204 writefd(f, (char *)b, 2);
1205}
1206
1207
1208void write_int(int f,int32 x)
1209{
1210 char b[4];
1211 SIVAL(b,0,x);
1212 writefd(f,b,4);
1213}
1214
1215
1216void write_int_named(int f, int32 x, const char *phase)
1217{
1218 io_write_phase = phase;
1219 write_int(f, x);
1220 io_write_phase = phase_unknown;
1221}
1222
1223
1224/*
1225 * Note: int64 may actually be a 32-bit type if ./configure couldn't find any
1226 * 64-bit types on this platform.
1227 */
1228void write_longint(int f, int64 x)
1229{
1230 char b[8];
1231
1232 if (x <= 0x7FFFFFFF) {
1233 write_int(f, (int)x);
1234 return;
1235 }
1236
1237#if SIZEOF_INT64 < 8
1238 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
1239 exit_cleanup(RERR_UNSUPPORTED);
1240#else
1241 write_int(f, (int32)0xFFFFFFFF);
1242 SIVAL(b,0,(x&0xFFFFFFFF));
1243 SIVAL(b,4,((x>>32)&0xFFFFFFFF));
1244
1245 writefd(f,b,8);
1246#endif
1247}
1248
1249void write_buf(int f,char *buf,size_t len)
1250{
1251 writefd(f,buf,len);
1252}
1253
1254/** Write a string to the connection */
1255void write_sbuf(int f, char *buf)
1256{
1257 writefd(f, buf, strlen(buf));
1258}
1259
1260void write_byte(int f, uchar c)
1261{
1262 writefd(f, (char *)&c, 1);
1263}
1264
1265void write_vstring(int f, char *str, int len)
1266{
1267 uchar lenbuf[3], *lb = lenbuf;
1268
1269 if (len > 0x7F) {
1270 if (len > 0x7FFF) {
1271 rprintf(FERROR,
1272 "attempting to send over-long vstring (%d > %d)\n",
1273 len, 0x7FFF);
1274 exit_cleanup(RERR_PROTOCOL);
1275 }
1276 *lb++ = len / 0x100 + 0x80;
1277 }
1278 *lb = len;
1279
1280 writefd(f, (char*)lenbuf, lb - lenbuf + 1);
1281 if (len)
1282 writefd(f, str, len);
1283}
1284
1285
1286/**
1287 * Read a line of up to @p maxlen characters into @p buf (not counting
1288 * the trailing null). Strips the (required) trailing newline and all
1289 * carriage returns.
1290 *
1291 * @return 1 for success; 0 for I/O error or truncation.
1292 **/
1293int read_line(int f, char *buf, size_t maxlen)
1294{
1295 while (maxlen) {
1296 buf[0] = 0;
1297 read_buf(f, buf, 1);
1298 if (buf[0] == 0)
1299 return 0;
1300 if (buf[0] == '\n')
1301 break;
1302 if (buf[0] != '\r') {
1303 buf++;
1304 maxlen--;
1305 }
1306 }
1307 *buf = '\0';
1308 return maxlen > 0;
1309}
1310
1311
1312void io_printf(int fd, const char *format, ...)
1313{
1314 va_list ap;
1315 char buf[BIGPATHBUFLEN];
1316 int len;
1317
1318 va_start(ap, format);
1319 len = vsnprintf(buf, sizeof buf, format, ap);
1320 va_end(ap);
1321
1322 if (len < 0)
1323 exit_cleanup(RERR_STREAMIO);
1324
1325 if (len > (int)sizeof buf) {
1326 rprintf(FERROR, "io_printf() was too long for the buffer.\n");
1327 exit_cleanup(RERR_STREAMIO);
1328 }
1329
1330 write_sbuf(fd, buf);
1331}
1332
1333
1334/** Setup for multiplexing a MSG_* stream with the data stream. */
1335void io_start_multiplex_out(void)
1336{
1337 io_flush(NORMAL_FLUSH);
1338 io_start_buffering_out();
1339 io_multiplexing_out = 1;
1340}
1341
1342/** Setup for multiplexing a MSG_* stream with the data stream. */
1343void io_start_multiplex_in(void)
1344{
1345 io_flush(NORMAL_FLUSH);
1346 io_start_buffering_in();
1347 io_multiplexing_in = 1;
1348}
1349
1350/** Write an message to the multiplexed data stream. */
1351int io_multiplex_write(enum msgcode code, char *buf, size_t len)
1352{
1353 if (!io_multiplexing_out)
1354 return 0;
1355
1356 io_flush(NORMAL_FLUSH);
1357 stats.total_written += (len+4);
1358 mplex_write(code, buf, len);
1359 return 1;
1360}
1361
1362void close_multiplexing_in(void)
1363{
1364 io_multiplexing_in = 0;
1365}
1366
1367/** Stop output multiplexing. */
1368void close_multiplexing_out(void)
1369{
1370 io_multiplexing_out = 0;
1371}
1372
1373void start_write_batch(int fd)
1374{
1375 write_stream_flags(batch_fd);
1376
1377 /* Some communication has already taken place, but we don't
1378 * enable batch writing until here so that we can write a
1379 * canonical record of the communication even though the
1380 * actual communication so far depends on whether a daemon
1381 * is involved. */
1382 write_int(batch_fd, protocol_version);
1383 write_int(batch_fd, checksum_seed);
1384
1385 if (am_sender)
1386 write_batch_monitor_out = fd;
1387 else
1388 write_batch_monitor_in = fd;
1389}
1390
1391void stop_write_batch(void)
1392{
1393 write_batch_monitor_out = -1;
1394 write_batch_monitor_in = -1;
1395}