Fix copyright.
[rsync/rsync.git] / zlib / trees.c
CommitLineData
d4286ec4 1/* trees.c -- output deflated data using Huffman coding
be59d0ec 2 * Copyright (C) 1995-2002 Jean-loup Gailly
d4286ec4
PM
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 * ALGORITHM
8 *
9 * The "deflation" process uses several Huffman trees. The more
10 * common source values are represented by shorter bit sequences.
11 *
12 * Each code tree is stored in a compressed form which is itself
13 * a Huffman encoding of the lengths of all the code strings (in
14 * ascending order by source values). The actual code strings are
15 * reconstructed from the lengths in the inflate process, as described
16 * in the deflate specification.
17 *
18 * REFERENCES
19 *
20 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
22 *
23 * Storer, James A.
24 * Data Compression: Methods and Theory, pp. 49-50.
25 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
26 *
27 * Sedgewick, R.
28 * Algorithms, p290.
29 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
30 */
31
32/* @(#) $Id$ */
33
34/* #define GEN_TREES_H */
35
36#include "deflate.h"
37
38#ifdef DEBUG
39# include <ctype.h>
40#endif
41
42/* ===========================================================================
43 * Constants
44 */
45
46#define MAX_BL_BITS 7
47/* Bit length codes must not exceed MAX_BL_BITS bits */
48
49#define END_BLOCK 256
50/* end of block literal code */
51
52#define REP_3_6 16
53/* repeat previous bit length 3-6 times (2 bits of repeat count) */
54
55#define REPZ_3_10 17
56/* repeat a zero length 3-10 times (3 bits of repeat count) */
57
58#define REPZ_11_138 18
59/* repeat a zero length 11-138 times (7 bits of repeat count) */
60
61local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
62 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
63
64local const int extra_dbits[D_CODES] /* extra bits for each distance code */
65 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
66
67local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
68 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
69
70local const uch bl_order[BL_CODES]
71 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72/* The lengths of the bit length codes are sent in order of decreasing
73 * probability, to avoid transmitting the lengths for unused bit length codes.
74 */
75
76#define Buf_size (8 * 2*sizeof(char))
77/* Number of bits used within bi_buf. (bi_buf might be implemented on
78 * more than 16 bits on some systems.)
79 */
80
81/* ===========================================================================
82 * Local data. These are initialized only once.
83 */
84
85#define DIST_CODE_LEN 512 /* see definition of array dist_code below */
86
87#if defined(GEN_TREES_H) || !defined(STDC)
88/* non ANSI compilers may not accept trees.h */
89
90local ct_data static_ltree[L_CODES+2];
91/* The static literal tree. Since the bit lengths are imposed, there is no
92 * need for the L_CODES extra codes used during heap construction. However
93 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
94 * below).
95 */
96
97local ct_data static_dtree[D_CODES];
98/* The static distance tree. (Actually a trivial tree since all codes use
99 * 5 bits.)
100 */
101
102uch _dist_code[DIST_CODE_LEN];
103/* Distance codes. The first 256 values correspond to the distances
104 * 3 .. 258, the last 256 values correspond to the top 8 bits of
105 * the 15 bit distances.
106 */
107
108uch _length_code[MAX_MATCH-MIN_MATCH+1];
109/* length code for each normalized match length (0 == MIN_MATCH) */
110
111local int base_length[LENGTH_CODES];
112/* First normalized length for each code (0 = MIN_MATCH) */
113
114local int base_dist[D_CODES];
115/* First normalized distance for each code (0 = distance of 1) */
116
117#else
118# include "trees.h"
119#endif /* GEN_TREES_H */
120
121struct static_tree_desc_s {
122 const ct_data *static_tree; /* static tree or NULL */
123 const intf *extra_bits; /* extra bits for each code or NULL */
124 int extra_base; /* base index for extra_bits */
125 int elems; /* max number of elements in the tree */
126 int max_length; /* max bit length for the codes */
127};
128
129local static_tree_desc static_l_desc =
130{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
131
132local static_tree_desc static_d_desc =
133{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
134
135local static_tree_desc static_bl_desc =
136{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
137
138/* ===========================================================================
139 * Local (static) routines in this file.
140 */
141
142local void tr_static_init OF((void));
143local void init_block OF((deflate_state *s));
144local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
145local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
146local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
147local void build_tree OF((deflate_state *s, tree_desc *desc));
148local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
149local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
150local int build_bl_tree OF((deflate_state *s));
151local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
152 int blcodes));
153local void compress_block OF((deflate_state *s, ct_data *ltree,
154 ct_data *dtree));
155local void set_data_type OF((deflate_state *s));
156local unsigned bi_reverse OF((unsigned value, int length));
157local void bi_windup OF((deflate_state *s));
158local void bi_flush OF((deflate_state *s));
159local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
160 int header));
161
162#ifdef GEN_TREES_H
163local void gen_trees_header OF((void));
164#endif
165
166#ifndef DEBUG
167# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
168 /* Send a code of the given tree. c and tree must not have side effects */
169
170#else /* DEBUG */
171# define send_code(s, c, tree) \
172 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
173 send_bits(s, tree[c].Code, tree[c].Len); }
174#endif
175
176/* ===========================================================================
177 * Output a short LSB first on the stream.
178 * IN assertion: there is enough room in pendingBuf.
179 */
180#define put_short(s, w) { \
181 put_byte(s, (uch)((w) & 0xff)); \
182 put_byte(s, (uch)((ush)(w) >> 8)); \
183}
184
185/* ===========================================================================
186 * Send a value on a given number of bits.
187 * IN assertion: length <= 16 and value fits in length bits.
188 */
189#ifdef DEBUG
190local void send_bits OF((deflate_state *s, int value, int length));
191
192local void send_bits(s, value, length)
193 deflate_state *s;
194 int value; /* value to send */
195 int length; /* number of bits */
196{
197 Tracevv((stderr," l %2d v %4x ", length, value));
198 Assert(length > 0 && length <= 15, "invalid length");
199 s->bits_sent += (ulg)length;
200
201 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
202 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
203 * unused bits in value.
204 */
205 if (s->bi_valid > (int)Buf_size - length) {
206 s->bi_buf |= (value << s->bi_valid);
207 put_short(s, s->bi_buf);
208 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
209 s->bi_valid += length - Buf_size;
210 } else {
211 s->bi_buf |= value << s->bi_valid;
212 s->bi_valid += length;
213 }
214}
215#else /* !DEBUG */
216
217#define send_bits(s, value, length) \
218{ int len = length;\
219 if (s->bi_valid > (int)Buf_size - len) {\
220 int val = value;\
221 s->bi_buf |= (val << s->bi_valid);\
222 put_short(s, s->bi_buf);\
223 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
224 s->bi_valid += len - Buf_size;\
225 } else {\
226 s->bi_buf |= (value) << s->bi_valid;\
227 s->bi_valid += len;\
228 }\
229}
230#endif /* DEBUG */
231
232
06e27ef7
AT
233#ifndef MAX
234#define MAX(a,b) ((a) >= (b) ? (a) : (b))
235#endif
d4286ec4
PM
236/* the arguments must not have side effects */
237
238/* ===========================================================================
239 * Initialize the various 'constant' tables.
240 */
241local void tr_static_init()
242{
243#if defined(GEN_TREES_H) || !defined(STDC)
244 static int static_init_done = 0;
245 int n; /* iterates over tree elements */
246 int bits; /* bit counter */
247 int length; /* length value */
248 int code; /* code value */
249 int dist; /* distance index */
250 ush bl_count[MAX_BITS+1];
251 /* number of codes at each bit length for an optimal tree */
252
253 if (static_init_done) return;
254
06b91d8e
MP
255 /* For some embedded targets, global variables are not initialized: */
256 static_l_desc.static_tree = static_ltree;
257 static_l_desc.extra_bits = extra_lbits;
258 static_d_desc.static_tree = static_dtree;
259 static_d_desc.extra_bits = extra_dbits;
260 static_bl_desc.extra_bits = extra_blbits;
261
d4286ec4
PM
262 /* Initialize the mapping length (0..255) -> length code (0..28) */
263 length = 0;
264 for (code = 0; code < LENGTH_CODES-1; code++) {
265 base_length[code] = length;
266 for (n = 0; n < (1<<extra_lbits[code]); n++) {
267 _length_code[length++] = (uch)code;
268 }
269 }
270 Assert (length == 256, "tr_static_init: length != 256");
271 /* Note that the length 255 (match length 258) can be represented
272 * in two different ways: code 284 + 5 bits or code 285, so we
273 * overwrite length_code[255] to use the best encoding:
274 */
275 _length_code[length-1] = (uch)code;
276
277 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
278 dist = 0;
279 for (code = 0 ; code < 16; code++) {
280 base_dist[code] = dist;
281 for (n = 0; n < (1<<extra_dbits[code]); n++) {
282 _dist_code[dist++] = (uch)code;
283 }
284 }
285 Assert (dist == 256, "tr_static_init: dist != 256");
286 dist >>= 7; /* from now on, all distances are divided by 128 */
287 for ( ; code < D_CODES; code++) {
288 base_dist[code] = dist << 7;
289 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
290 _dist_code[256 + dist++] = (uch)code;
291 }
292 }
293 Assert (dist == 256, "tr_static_init: 256+dist != 512");
294
295 /* Construct the codes of the static literal tree */
296 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
297 n = 0;
298 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
299 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
300 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
301 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
302 /* Codes 286 and 287 do not exist, but we must include them in the
303 * tree construction to get a canonical Huffman tree (longest code
304 * all ones)
305 */
306 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
307
308 /* The static distance tree is trivial: */
309 for (n = 0; n < D_CODES; n++) {
310 static_dtree[n].Len = 5;
311 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
312 }
313 static_init_done = 1;
314
315# ifdef GEN_TREES_H
316 gen_trees_header();
317# endif
318#endif /* defined(GEN_TREES_H) || !defined(STDC) */
319}
320
321/* ===========================================================================
322 * Genererate the file trees.h describing the static trees.
323 */
324#ifdef GEN_TREES_H
325# ifndef DEBUG
326# include <stdio.h>
327# endif
328
329# define SEPARATOR(i, last, width) \
330 ((i) == (last)? "\n};\n\n" : \
331 ((i) % (width) == (width)-1 ? ",\n" : ", "))
332
333void gen_trees_header()
334{
335 FILE *header = fopen("trees.h", "w");
336 int i;
337
338 Assert (header != NULL, "Can't open trees.h");
339 fprintf(header,
340 "/* header created automatically with -DGEN_TREES_H */\n\n");
341
342 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
343 for (i = 0; i < L_CODES+2; i++) {
344 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
345 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
346 }
347
348 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
349 for (i = 0; i < D_CODES; i++) {
350 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
351 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
352 }
353
354 fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
355 for (i = 0; i < DIST_CODE_LEN; i++) {
356 fprintf(header, "%2u%s", _dist_code[i],
357 SEPARATOR(i, DIST_CODE_LEN-1, 20));
358 }
359
360 fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
361 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
362 fprintf(header, "%2u%s", _length_code[i],
363 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
364 }
365
366 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
367 for (i = 0; i < LENGTH_CODES; i++) {
368 fprintf(header, "%1u%s", base_length[i],
369 SEPARATOR(i, LENGTH_CODES-1, 20));
370 }
371
372 fprintf(header, "local const int base_dist[D_CODES] = {\n");
373 for (i = 0; i < D_CODES; i++) {
374 fprintf(header, "%5u%s", base_dist[i],
375 SEPARATOR(i, D_CODES-1, 10));
376 }
377
378 fclose(header);
379}
380#endif /* GEN_TREES_H */
381
382/* ===========================================================================
383 * Initialize the tree data structures for a new zlib stream.
384 */
385void _tr_init(s)
386 deflate_state *s;
387{
388 tr_static_init();
389
d4286ec4
PM
390 s->l_desc.dyn_tree = s->dyn_ltree;
391 s->l_desc.stat_desc = &static_l_desc;
392
393 s->d_desc.dyn_tree = s->dyn_dtree;
394 s->d_desc.stat_desc = &static_d_desc;
395
396 s->bl_desc.dyn_tree = s->bl_tree;
397 s->bl_desc.stat_desc = &static_bl_desc;
398
399 s->bi_buf = 0;
400 s->bi_valid = 0;
401 s->last_eob_len = 8; /* enough lookahead for inflate */
402#ifdef DEBUG
06b91d8e 403 s->compressed_len = 0L;
d4286ec4
PM
404 s->bits_sent = 0L;
405#endif
406
407 /* Initialize the first block of the first file: */
408 init_block(s);
409}
410
411/* ===========================================================================
412 * Initialize a new block.
413 */
414local void init_block(s)
415 deflate_state *s;
416{
417 int n; /* iterates over tree elements */
418
419 /* Initialize the trees. */
420 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
421 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
422 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
423
424 s->dyn_ltree[END_BLOCK].Freq = 1;
425 s->opt_len = s->static_len = 0L;
426 s->last_lit = s->matches = 0;
427}
428
429#define SMALLEST 1
430/* Index within the heap array of least frequent node in the Huffman tree */
431
432
433/* ===========================================================================
434 * Remove the smallest element from the heap and recreate the heap with
435 * one less element. Updates heap and heap_len.
436 */
437#define pqremove(s, tree, top) \
438{\
439 top = s->heap[SMALLEST]; \
440 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
441 pqdownheap(s, tree, SMALLEST); \
442}
443
444/* ===========================================================================
445 * Compares to subtrees, using the tree depth as tie breaker when
446 * the subtrees have equal frequency. This minimizes the worst case length.
447 */
448#define smaller(tree, n, m, depth) \
449 (tree[n].Freq < tree[m].Freq || \
450 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
451
452/* ===========================================================================
453 * Restore the heap property by moving down the tree starting at node k,
454 * exchanging a node with the smallest of its two sons if necessary, stopping
455 * when the heap property is re-established (each father smaller than its
456 * two sons).
457 */
458local void pqdownheap(s, tree, k)
459 deflate_state *s;
460 ct_data *tree; /* the tree to restore */
461 int k; /* node to move down */
462{
463 int v = s->heap[k];
464 int j = k << 1; /* left son of k */
465 while (j <= s->heap_len) {
466 /* Set j to the smallest of the two sons: */
467 if (j < s->heap_len &&
468 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
469 j++;
470 }
471 /* Exit if v is smaller than both sons */
472 if (smaller(tree, v, s->heap[j], s->depth)) break;
473
474 /* Exchange v with the smallest son */
475 s->heap[k] = s->heap[j]; k = j;
476
477 /* And continue down the tree, setting j to the left son of k */
478 j <<= 1;
479 }
480 s->heap[k] = v;
481}
482
483/* ===========================================================================
484 * Compute the optimal bit lengths for a tree and update the total bit length
485 * for the current block.
486 * IN assertion: the fields freq and dad are set, heap[heap_max] and
487 * above are the tree nodes sorted by increasing frequency.
488 * OUT assertions: the field len is set to the optimal bit length, the
489 * array bl_count contains the frequencies for each bit length.
490 * The length opt_len is updated; static_len is also updated if stree is
491 * not null.
492 */
493local void gen_bitlen(s, desc)
494 deflate_state *s;
495 tree_desc *desc; /* the tree descriptor */
496{
497 ct_data *tree = desc->dyn_tree;
498 int max_code = desc->max_code;
499 const ct_data *stree = desc->stat_desc->static_tree;
500 const intf *extra = desc->stat_desc->extra_bits;
501 int base = desc->stat_desc->extra_base;
502 int max_length = desc->stat_desc->max_length;
503 int h; /* heap index */
504 int n, m; /* iterate over the tree elements */
505 int bits; /* bit length */
506 int xbits; /* extra bits */
507 ush f; /* frequency */
06e27ef7 508 int Overflow = 0; /* number of elements with bit length too large */
d4286ec4
PM
509
510 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
511
512 /* In a first pass, compute the optimal bit lengths (which may
513 * overflow in the case of the bit length tree).
514 */
515 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
516
517 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
518 n = s->heap[h];
519 bits = tree[tree[n].Dad].Len + 1;
06e27ef7 520 if (bits > max_length) bits = max_length, Overflow++;
d4286ec4
PM
521 tree[n].Len = (ush)bits;
522 /* We overwrite tree[n].Dad which is no longer needed */
523
524 if (n > max_code) continue; /* not a leaf node */
525
526 s->bl_count[bits]++;
527 xbits = 0;
528 if (n >= base) xbits = extra[n-base];
529 f = tree[n].Freq;
530 s->opt_len += (ulg)f * (bits + xbits);
531 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
532 }
06e27ef7 533 if (Overflow == 0) return;
d4286ec4
PM
534
535 Trace((stderr,"\nbit length overflow\n"));
536 /* This happens for example on obj2 and pic of the Calgary corpus */
537
538 /* Find the first bit length which could increase: */
539 do {
540 bits = max_length-1;
541 while (s->bl_count[bits] == 0) bits--;
542 s->bl_count[bits]--; /* move one leaf down the tree */
543 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
544 s->bl_count[max_length]--;
545 /* The brother of the overflow item also moves one step up,
546 * but this does not affect bl_count[max_length]
547 */
06e27ef7
AT
548 Overflow -= 2;
549 } while (Overflow > 0);
d4286ec4
PM
550
551 /* Now recompute all bit lengths, scanning in increasing frequency.
552 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
553 * lengths instead of fixing only the wrong ones. This idea is taken
554 * from 'ar' written by Haruhiko Okumura.)
555 */
556 for (bits = max_length; bits != 0; bits--) {
557 n = s->bl_count[bits];
558 while (n != 0) {
559 m = s->heap[--h];
560 if (m > max_code) continue;
561 if (tree[m].Len != (unsigned) bits) {
562 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
563 s->opt_len += ((long)bits - (long)tree[m].Len)
564 *(long)tree[m].Freq;
565 tree[m].Len = (ush)bits;
566 }
567 n--;
568 }
569 }
570}
571
572/* ===========================================================================
573 * Generate the codes for a given tree and bit counts (which need not be
574 * optimal).
575 * IN assertion: the array bl_count contains the bit length statistics for
576 * the given tree and the field len is set for all tree elements.
577 * OUT assertion: the field code is set for all tree elements of non
578 * zero code length.
579 */
580local void gen_codes (tree, max_code, bl_count)
581 ct_data *tree; /* the tree to decorate */
582 int max_code; /* largest code with non zero frequency */
583 ushf *bl_count; /* number of codes at each bit length */
584{
585 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
586 ush code = 0; /* running code value */
587 int bits; /* bit index */
588 int n; /* code index */
589
590 /* The distribution counts are first used to generate the code values
591 * without bit reversal.
592 */
593 for (bits = 1; bits <= MAX_BITS; bits++) {
594 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
595 }
596 /* Check that the bit counts in bl_count are consistent. The last code
597 * must be all ones.
598 */
599 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
600 "inconsistent bit counts");
601 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
602
603 for (n = 0; n <= max_code; n++) {
604 int len = tree[n].Len;
605 if (len == 0) continue;
606 /* Now reverse the bits */
607 tree[n].Code = bi_reverse(next_code[len]++, len);
608
609 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
610 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
611 }
612}
613
614/* ===========================================================================
615 * Construct one Huffman tree and assigns the code bit strings and lengths.
616 * Update the total bit length for the current block.
617 * IN assertion: the field freq is set for all tree elements.
618 * OUT assertions: the fields len and code are set to the optimal bit length
619 * and corresponding code. The length opt_len is updated; static_len is
620 * also updated if stree is not null. The field max_code is set.
621 */
622local void build_tree(s, desc)
623 deflate_state *s;
624 tree_desc *desc; /* the tree descriptor */
625{
626 ct_data *tree = desc->dyn_tree;
627 const ct_data *stree = desc->stat_desc->static_tree;
628 int elems = desc->stat_desc->elems;
629 int n, m; /* iterate over heap elements */
630 int max_code = -1; /* largest code with non zero frequency */
631 int node; /* new node being created */
632
633 /* Construct the initial heap, with least frequent element in
634 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
635 * heap[0] is not used.
636 */
637 s->heap_len = 0, s->heap_max = HEAP_SIZE;
638
639 for (n = 0; n < elems; n++) {
640 if (tree[n].Freq != 0) {
641 s->heap[++(s->heap_len)] = max_code = n;
642 s->depth[n] = 0;
643 } else {
644 tree[n].Len = 0;
645 }
646 }
647
648 /* The pkzip format requires that at least one distance code exists,
649 * and that at least one bit should be sent even if there is only one
650 * possible code. So to avoid special checks later on we force at least
651 * two codes of non zero frequency.
652 */
653 while (s->heap_len < 2) {
654 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
655 tree[node].Freq = 1;
656 s->depth[node] = 0;
657 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
658 /* node is 0 or 1 so it does not have extra bits */
659 }
660 desc->max_code = max_code;
661
662 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
663 * establish sub-heaps of increasing lengths:
664 */
665 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
666
667 /* Construct the Huffman tree by repeatedly combining the least two
668 * frequent nodes.
669 */
670 node = elems; /* next internal node of the tree */
671 do {
672 pqremove(s, tree, n); /* n = node of least frequency */
673 m = s->heap[SMALLEST]; /* m = node of next least frequency */
674
675 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
676 s->heap[--(s->heap_max)] = m;
677
678 /* Create a new node father of n and m */
679 tree[node].Freq = tree[n].Freq + tree[m].Freq;
680 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
681 tree[n].Dad = tree[m].Dad = (ush)node;
682#ifdef DUMP_BL_TREE
683 if (tree == s->bl_tree) {
684 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
685 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
686 }
687#endif
688 /* and insert the new node in the heap */
689 s->heap[SMALLEST] = node++;
690 pqdownheap(s, tree, SMALLEST);
691
692 } while (s->heap_len >= 2);
693
694 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
695
696 /* At this point, the fields freq and dad are set. We can now
697 * generate the bit lengths.
698 */
699 gen_bitlen(s, (tree_desc *)desc);
700
701 /* The field len is now set, we can generate the bit codes */
702 gen_codes ((ct_data *)tree, max_code, s->bl_count);
703}
704
705/* ===========================================================================
706 * Scan a literal or distance tree to determine the frequencies of the codes
707 * in the bit length tree.
708 */
709local void scan_tree (s, tree, max_code)
710 deflate_state *s;
711 ct_data *tree; /* the tree to be scanned */
712 int max_code; /* and its largest code of non zero frequency */
713{
714 int n; /* iterates over all tree elements */
715 int prevlen = -1; /* last emitted length */
716 int curlen; /* length of current code */
717 int nextlen = tree[0].Len; /* length of next code */
718 int count = 0; /* repeat count of the current code */
719 int max_count = 7; /* max repeat count */
720 int min_count = 4; /* min repeat count */
721
722 if (nextlen == 0) max_count = 138, min_count = 3;
723 tree[max_code+1].Len = (ush)0xffff; /* guard */
724
725 for (n = 0; n <= max_code; n++) {
726 curlen = nextlen; nextlen = tree[n+1].Len;
727 if (++count < max_count && curlen == nextlen) {
728 continue;
729 } else if (count < min_count) {
730 s->bl_tree[curlen].Freq += count;
731 } else if (curlen != 0) {
732 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
733 s->bl_tree[REP_3_6].Freq++;
734 } else if (count <= 10) {
735 s->bl_tree[REPZ_3_10].Freq++;
736 } else {
737 s->bl_tree[REPZ_11_138].Freq++;
738 }
739 count = 0; prevlen = curlen;
740 if (nextlen == 0) {
741 max_count = 138, min_count = 3;
742 } else if (curlen == nextlen) {
743 max_count = 6, min_count = 3;
744 } else {
745 max_count = 7, min_count = 4;
746 }
747 }
748}
749
750/* ===========================================================================
751 * Send a literal or distance tree in compressed form, using the codes in
752 * bl_tree.
753 */
754local void send_tree (s, tree, max_code)
755 deflate_state *s;
756 ct_data *tree; /* the tree to be scanned */
757 int max_code; /* and its largest code of non zero frequency */
758{
759 int n; /* iterates over all tree elements */
760 int prevlen = -1; /* last emitted length */
761 int curlen; /* length of current code */
762 int nextlen = tree[0].Len; /* length of next code */
763 int count = 0; /* repeat count of the current code */
764 int max_count = 7; /* max repeat count */
765 int min_count = 4; /* min repeat count */
766
767 /* tree[max_code+1].Len = -1; */ /* guard already set */
768 if (nextlen == 0) max_count = 138, min_count = 3;
769
770 for (n = 0; n <= max_code; n++) {
771 curlen = nextlen; nextlen = tree[n+1].Len;
772 if (++count < max_count && curlen == nextlen) {
773 continue;
774 } else if (count < min_count) {
775 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
776
777 } else if (curlen != 0) {
778 if (curlen != prevlen) {
779 send_code(s, curlen, s->bl_tree); count--;
780 }
781 Assert(count >= 3 && count <= 6, " 3_6?");
782 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
783
784 } else if (count <= 10) {
785 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
786
787 } else {
788 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
789 }
790 count = 0; prevlen = curlen;
791 if (nextlen == 0) {
792 max_count = 138, min_count = 3;
793 } else if (curlen == nextlen) {
794 max_count = 6, min_count = 3;
795 } else {
796 max_count = 7, min_count = 4;
797 }
798 }
799}
800
801/* ===========================================================================
802 * Construct the Huffman tree for the bit lengths and return the index in
803 * bl_order of the last bit length code to send.
804 */
805local int build_bl_tree(s)
806 deflate_state *s;
807{
808 int max_blindex; /* index of last bit length code of non zero freq */
809
810 /* Determine the bit length frequencies for literal and distance trees */
811 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
812 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
813
814 /* Build the bit length tree: */
815 build_tree(s, (tree_desc *)(&(s->bl_desc)));
816 /* opt_len now includes the length of the tree representations, except
817 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
818 */
819
820 /* Determine the number of bit length codes to send. The pkzip format
821 * requires that at least 4 bit length codes be sent. (appnote.txt says
822 * 3 but the actual value used is 4.)
823 */
824 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
825 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
826 }
827 /* Update opt_len to include the bit length tree and counts */
828 s->opt_len += 3*(max_blindex+1) + 5+5+4;
829 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
830 s->opt_len, s->static_len));
831
832 return max_blindex;
833}
834
835/* ===========================================================================
836 * Send the header for a block using dynamic Huffman trees: the counts, the
837 * lengths of the bit length codes, the literal tree and the distance tree.
838 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
839 */
840local void send_all_trees(s, lcodes, dcodes, blcodes)
841 deflate_state *s;
842 int lcodes, dcodes, blcodes; /* number of codes for each tree */
843{
844 int rank; /* index in bl_order */
845
846 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
847 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
848 "too many codes");
849 Tracev((stderr, "\nbl counts: "));
850 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
851 send_bits(s, dcodes-1, 5);
852 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
853 for (rank = 0; rank < blcodes; rank++) {
854 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
855 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
856 }
857 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
858
859 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
860 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
861
862 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
863 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
864}
865
866/* ===========================================================================
867 * Send a stored block
868 */
869void _tr_stored_block(s, buf, stored_len, eof)
870 deflate_state *s;
871 charf *buf; /* input block */
872 ulg stored_len; /* length of input block */
873 int eof; /* true if this is the last block for a file */
874{
875 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
06b91d8e 876#ifdef DEBUG
d4286ec4
PM
877 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
878 s->compressed_len += (stored_len + 4) << 3;
06b91d8e 879#endif
d4286ec4
PM
880 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
881}
882
883/* ===========================================================================
884 * Send one empty static block to give enough lookahead for inflate.
885 * This takes 10 bits, of which 7 may remain in the bit buffer.
886 * The current inflate code requires 9 bits of lookahead. If the
887 * last two codes for the previous block (real code plus EOB) were coded
888 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
889 * the last real code. In this case we send two empty static blocks instead
890 * of one. (There are no problems if the previous block is stored or fixed.)
891 * To simplify the code, we assume the worst case of last real code encoded
892 * on one bit only.
893 */
894void _tr_align(s)
895 deflate_state *s;
896{
897 send_bits(s, STATIC_TREES<<1, 3);
898 send_code(s, END_BLOCK, static_ltree);
06b91d8e 899#ifdef DEBUG
d4286ec4 900 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
06b91d8e 901#endif
d4286ec4
PM
902 bi_flush(s);
903 /* Of the 10 bits for the empty block, we have already sent
904 * (10 - bi_valid) bits. The lookahead for the last real code (before
905 * the EOB of the previous block) was thus at least one plus the length
906 * of the EOB plus what we have just sent of the empty static block.
907 */
908 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
909 send_bits(s, STATIC_TREES<<1, 3);
910 send_code(s, END_BLOCK, static_ltree);
06b91d8e 911#ifdef DEBUG
d4286ec4 912 s->compressed_len += 10L;
06b91d8e 913#endif
d4286ec4
PM
914 bi_flush(s);
915 }
916 s->last_eob_len = 7;
917}
918
919/* ===========================================================================
920 * Determine the best encoding for the current block: dynamic trees, static
06b91d8e 921 * trees or store, and output the encoded block to the zip file.
d4286ec4 922 */
06b91d8e 923void _tr_flush_block(s, buf, stored_len, eof)
d4286ec4
PM
924 deflate_state *s;
925 charf *buf; /* input block, or NULL if too old */
926 ulg stored_len; /* length of input block */
927 int eof; /* true if this is the last block for a file */
928{
929 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
930 int max_blindex = 0; /* index of last bit length code of non zero freq */
931
932 /* Build the Huffman trees unless a stored block is forced */
933 if (s->level > 0) {
934
935 /* Check if the file is ascii or binary */
936 if (s->data_type == Z_UNKNOWN) set_data_type(s);
937
938 /* Construct the literal and distance trees */
939 build_tree(s, (tree_desc *)(&(s->l_desc)));
940 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
941 s->static_len));
942
943 build_tree(s, (tree_desc *)(&(s->d_desc)));
944 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
945 s->static_len));
946 /* At this point, opt_len and static_len are the total bit lengths of
947 * the compressed block data, excluding the tree representations.
948 */
949
950 /* Build the bit length tree for the above two trees, and get the index
951 * in bl_order of the last bit length code to send.
952 */
953 max_blindex = build_bl_tree(s);
954
955 /* Determine the best encoding. Compute first the block length in bytes*/
956 opt_lenb = (s->opt_len+3+7)>>3;
957 static_lenb = (s->static_len+3+7)>>3;
958
959 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
960 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
961 s->last_lit));
962
963 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
964
965 } else {
966 Assert(buf != (char*)0, "lost buf");
967 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
968 }
969
d4286ec4
PM
970#ifdef FORCE_STORED
971 if (buf != (char*)0) { /* force stored block */
972#else
973 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
974 /* 4: two words for the lengths */
975#endif
976 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
977 * Otherwise we can't have processed more than WSIZE input bytes since
978 * the last block flush, because compression would have been
979 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
980 * transform a block into a stored block.
981 */
982 _tr_stored_block(s, buf, stored_len, eof);
983
984#ifdef FORCE_STATIC
985 } else if (static_lenb >= 0) { /* force static trees */
986#else
987 } else if (static_lenb == opt_lenb) {
988#endif
989 send_bits(s, (STATIC_TREES<<1)+eof, 3);
990 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
06b91d8e 991#ifdef DEBUG
d4286ec4 992 s->compressed_len += 3 + s->static_len;
06b91d8e 993#endif
d4286ec4
PM
994 } else {
995 send_bits(s, (DYN_TREES<<1)+eof, 3);
996 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
997 max_blindex+1);
998 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
06b91d8e 999#ifdef DEBUG
d4286ec4 1000 s->compressed_len += 3 + s->opt_len;
06b91d8e 1001#endif
d4286ec4
PM
1002 }
1003 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
06b91d8e
MP
1004 /* The above check is made mod 2^32, for files larger than 512 MB
1005 * and uLong implemented on 32 bits.
1006 */
d4286ec4
PM
1007 init_block(s);
1008
1009 if (eof) {
1010 bi_windup(s);
06b91d8e 1011#ifdef DEBUG
d4286ec4 1012 s->compressed_len += 7; /* align on byte boundary */
06b91d8e 1013#endif
d4286ec4
PM
1014 }
1015 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1016 s->compressed_len-7*eof));
d4286ec4
PM
1017}
1018
1019/* ===========================================================================
1020 * Save the match info and tally the frequency counts. Return true if
1021 * the current block must be flushed.
1022 */
1023int _tr_tally (s, dist, lc)
1024 deflate_state *s;
1025 unsigned dist; /* distance of matched string */
1026 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1027{
1028 s->d_buf[s->last_lit] = (ush)dist;
1029 s->l_buf[s->last_lit++] = (uch)lc;
1030 if (dist == 0) {
1031 /* lc is the unmatched char */
1032 s->dyn_ltree[lc].Freq++;
1033 } else {
1034 s->matches++;
1035 /* Here, lc is the match length - MIN_MATCH */
1036 dist--; /* dist = match distance - 1 */
1037 Assert((ush)dist < (ush)MAX_DIST(s) &&
1038 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1039 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1040
1041 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1042 s->dyn_dtree[d_code(dist)].Freq++;
1043 }
1044
1045#ifdef TRUNCATE_BLOCK
1046 /* Try to guess if it is profitable to stop the current block here */
1047 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1048 /* Compute an upper bound for the compressed length */
1049 ulg out_length = (ulg)s->last_lit*8L;
1050 ulg in_length = (ulg)((long)s->strstart - s->block_start);
1051 int dcode;
1052 for (dcode = 0; dcode < D_CODES; dcode++) {
1053 out_length += (ulg)s->dyn_dtree[dcode].Freq *
1054 (5L+extra_dbits[dcode]);
1055 }
1056 out_length >>= 3;
1057 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1058 s->last_lit, in_length, out_length,
1059 100L - out_length*100L/in_length));
1060 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1061 }
1062#endif
1063 return (s->last_lit == s->lit_bufsize-1);
1064 /* We avoid equality with lit_bufsize because of wraparound at 64K
1065 * on 16 bit machines and because stored blocks are restricted to
1066 * 64K-1 bytes.
1067 */
1068}
1069
1070/* ===========================================================================
1071 * Send the block data compressed using the given Huffman trees
1072 */
1073local void compress_block(s, ltree, dtree)
1074 deflate_state *s;
1075 ct_data *ltree; /* literal tree */
1076 ct_data *dtree; /* distance tree */
1077{
1078 unsigned dist; /* distance of matched string */
1079 int lc; /* match length or unmatched char (if dist == 0) */
1080 unsigned lx = 0; /* running index in l_buf */
1081 unsigned code; /* the code to send */
1082 int extra; /* number of extra bits to send */
1083
1084 if (s->last_lit != 0) do {
1085 dist = s->d_buf[lx];
1086 lc = s->l_buf[lx++];
1087 if (dist == 0) {
1088 send_code(s, lc, ltree); /* send a literal byte */
1089 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1090 } else {
1091 /* Here, lc is the match length - MIN_MATCH */
1092 code = _length_code[lc];
1093 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1094 extra = extra_lbits[code];
1095 if (extra != 0) {
1096 lc -= base_length[code];
1097 send_bits(s, lc, extra); /* send the extra length bits */
1098 }
1099 dist--; /* dist is now the match distance - 1 */
1100 code = d_code(dist);
1101 Assert (code < D_CODES, "bad d_code");
1102
1103 send_code(s, code, dtree); /* send the distance code */
1104 extra = extra_dbits[code];
1105 if (extra != 0) {
1106 dist -= base_dist[code];
1107 send_bits(s, dist, extra); /* send the extra distance bits */
1108 }
1109 } /* literal or match pair ? */
1110
1111 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1112 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1113
1114 } while (lx < s->last_lit);
1115
1116 send_code(s, END_BLOCK, ltree);
1117 s->last_eob_len = ltree[END_BLOCK].Len;
1118}
1119
1120/* ===========================================================================
1121 * Set the data type to ASCII or BINARY, using a crude approximation:
1122 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1123 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1124 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1125 */
1126local void set_data_type(s)
1127 deflate_state *s;
1128{
1129 int n = 0;
1130 unsigned ascii_freq = 0;
1131 unsigned bin_freq = 0;
1132 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
1133 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
1134 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1135 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1136}
1137
1138/* ===========================================================================
1139 * Reverse the first len bits of a code, using straightforward code (a faster
1140 * method would use a table)
1141 * IN assertion: 1 <= len <= 15
1142 */
1143local unsigned bi_reverse(code, len)
1144 unsigned code; /* the value to invert */
1145 int len; /* its bit length */
1146{
1147 register unsigned res = 0;
1148 do {
1149 res |= code & 1;
1150 code >>= 1, res <<= 1;
1151 } while (--len > 0);
1152 return res >> 1;
1153}
1154
1155/* ===========================================================================
1156 * Flush the bit buffer, keeping at most 7 bits in it.
1157 */
1158local void bi_flush(s)
1159 deflate_state *s;
1160{
1161 if (s->bi_valid == 16) {
1162 put_short(s, s->bi_buf);
1163 s->bi_buf = 0;
1164 s->bi_valid = 0;
1165 } else if (s->bi_valid >= 8) {
1166 put_byte(s, (Byte)s->bi_buf);
1167 s->bi_buf >>= 8;
1168 s->bi_valid -= 8;
1169 }
1170}
1171
1172/* ===========================================================================
1173 * Flush the bit buffer and align the output on a byte boundary
1174 */
1175local void bi_windup(s)
1176 deflate_state *s;
1177{
1178 if (s->bi_valid > 8) {
1179 put_short(s, s->bi_buf);
1180 } else if (s->bi_valid > 0) {
1181 put_byte(s, (Byte)s->bi_buf);
1182 }
1183 s->bi_buf = 0;
1184 s->bi_valid = 0;
1185#ifdef DEBUG
1186 s->bits_sent = (s->bits_sent+7) & ~7;
1187#endif
1188}
1189
1190/* ===========================================================================
1191 * Copy a stored block, storing first the length and its
1192 * one's complement if requested.
1193 */
1194local void copy_block(s, buf, len, header)
1195 deflate_state *s;
1196 charf *buf; /* the input data */
1197 unsigned len; /* its length */
1198 int header; /* true if block header must be written */
1199{
1200 bi_windup(s); /* align on byte boundary */
1201 s->last_eob_len = 8; /* enough lookahead for inflate */
1202
1203 if (header) {
1204 put_short(s, (ush)len);
1205 put_short(s, (ush)~len);
1206#ifdef DEBUG
1207 s->bits_sent += 2*16;
1208#endif
1209 }
1210#ifdef DEBUG
1211 s->bits_sent += (ulg)len<<3;
1212#endif
1213 while (len--) {
1214 put_byte(s, *buf++);
1215 }
1216}