Fix compression bug where incompressible files weren't transmitted correctly.
[rsync/rsync.git] / lib / zlib.c
CommitLineData
861c20b4
PM
1/*
2 * This file is derived from various .h and .c files from the zlib-0.95
3 * distribution by Jean-loup Gailly and Mark Adler, with some additions
4 * by Paul Mackerras to aid in implementing Deflate compression and
5 * decompression for PPP packets. See zlib.h for conditions of
6 * distribution and use.
7 *
8 * Changes that have been made include:
9 * - changed functions not used outside this file to "local"
861c20b4
PM
10 * - added Z_PACKET_FLUSH (see zlib.h for details)
11 * - added inflateIncomp
12 *
13 * $Id$
14 */
15
16
17/*+++++*/
18/* zutil.h -- internal interface and configuration of the compression library
19 * Copyright (C) 1995 Jean-loup Gailly.
20 * For conditions of distribution and use, see copyright notice in zlib.h
21 */
22
23/* WARNING: this file should *not* be used by applications. It is
24 part of the implementation of the compression library and is
25 subject to change. Applications should only use zlib.h.
26 */
27
28/* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */
29
30#define _Z_UTIL_H
31
ef21f8db 32#include "../rsync.h"
861c20b4
PM
33#include "zlib.h"
34
35#ifndef local
36# define local static
37#endif
38/* compile with -Dlocal if your debugger can't find static symbols */
39
40#define FAR
41
42typedef unsigned char uch;
43typedef uch FAR uchf;
44typedef unsigned short ush;
45typedef ush FAR ushf;
46typedef unsigned int ulg;
47
48extern char *z_errmsg[]; /* indexed by 1-zlib_error */
49
50#define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err)
51/* To be used only when the state is known to be valid */
52
53#ifndef NULL
54#define NULL ((void *) 0)
55#endif
56
57 /* common constants */
58
59#define DEFLATED 8
60
61#ifndef DEF_WBITS
62# define DEF_WBITS MAX_WBITS
63#endif
64/* default windowBits for decompression. MAX_WBITS is for compression only */
65
66#if MAX_MEM_LEVEL >= 8
67# define DEF_MEM_LEVEL 8
68#else
69# define DEF_MEM_LEVEL MAX_MEM_LEVEL
70#endif
71/* default memLevel */
72
73#define STORED_BLOCK 0
74#define STATIC_TREES 1
75#define DYN_TREES 2
76/* The three kinds of block type */
77
78#define MIN_MATCH 3
79#define MAX_MATCH 258
80/* The minimum and maximum match lengths */
81
82 /* functions */
ef21f8db
AT
83#define zmemcpy(d, s, n) bcopy((s), (d), (n))
84#define zmemzero bzero
861c20b4
PM
85
86/* Diagnostic functions */
87#ifdef DEBUG_ZLIB
88# include <stdio.h>
89# ifndef verbose
90# define verbose 0
91# endif
92# define Assert(cond,msg) {if(!(cond)) z_error(msg);}
93# define Trace(x) fprintf x
94# define Tracev(x) {if (verbose) fprintf x ;}
95# define Tracevv(x) {if (verbose>1) fprintf x ;}
96# define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
97# define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
98#else
99# define Assert(cond,msg)
100# define Trace(x)
101# define Tracev(x)
102# define Tracevv(x)
103# define Tracec(c,x)
104# define Tracecv(c,x)
105#endif
106
107
108typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len));
109
110/* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
111/* void zcfree OF((voidpf opaque, voidpf ptr)); */
112
113#define ZALLOC(strm, items, size) \
114 (*((strm)->zalloc))((strm)->opaque, (items), (size))
115#define ZFREE(strm, addr, size) \
116 (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size))
117#define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);}
118
119/* deflate.h -- internal compression state
120 * Copyright (C) 1995 Jean-loup Gailly
121 * For conditions of distribution and use, see copyright notice in zlib.h
122 */
123
124/* WARNING: this file should *not* be used by applications. It is
125 part of the implementation of the compression library and is
126 subject to change. Applications should only use zlib.h.
127 */
128
129
130/*+++++*/
131/* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */
132
133/* ===========================================================================
134 * Internal compression state.
135 */
136
137/* Data type */
138#define BINARY 0
139#define ASCII 1
140#define UNKNOWN 2
141
142#define LENGTH_CODES 29
143/* number of length codes, not counting the special END_BLOCK code */
144
145#define LITERALS 256
146/* number of literal bytes 0..255 */
147
148#define L_CODES (LITERALS+1+LENGTH_CODES)
149/* number of Literal or Length codes, including the END_BLOCK code */
150
151#define D_CODES 30
152/* number of distance codes */
153
154#define BL_CODES 19
155/* number of codes used to transfer the bit lengths */
156
157#define HEAP_SIZE (2*L_CODES+1)
158/* maximum heap size */
159
160#define MAX_BITS 15
161/* All codes must not exceed MAX_BITS bits */
162
163#define INIT_STATE 42
164#define BUSY_STATE 113
165#define FLUSH_STATE 124
166#define FINISH_STATE 666
167/* Stream status */
168
169
170/* Data structure describing a single value and its code string. */
171typedef struct ct_data_s {
172 union {
173 ush freq; /* frequency count */
174 ush code; /* bit string */
175 } fc;
176 union {
177 ush dad; /* father node in Huffman tree */
178 ush len; /* length of bit string */
179 } dl;
180} FAR ct_data;
181
182#define Freq fc.freq
183#define Code fc.code
184#define Dad dl.dad
185#define Len dl.len
186
187typedef struct static_tree_desc_s static_tree_desc;
188
189typedef struct tree_desc_s {
190 ct_data *dyn_tree; /* the dynamic tree */
191 int max_code; /* largest code with non zero frequency */
192 static_tree_desc *stat_desc; /* the corresponding static tree */
193} FAR tree_desc;
194
195typedef ush Pos;
196typedef Pos FAR Posf;
197typedef unsigned IPos;
198
199/* A Pos is an index in the character window. We use short instead of int to
200 * save space in the various tables. IPos is used only for parameter passing.
201 */
202
203typedef struct deflate_state {
204 z_stream *strm; /* pointer back to this zlib stream */
205 int status; /* as the name implies */
206 Bytef *pending_buf; /* output still pending */
207 Bytef *pending_out; /* next pending byte to output to the stream */
208 int pending; /* nb of bytes in the pending buffer */
209 uLong adler; /* adler32 of uncompressed data */
210 int noheader; /* suppress zlib header and adler32 */
211 Byte data_type; /* UNKNOWN, BINARY or ASCII */
212 Byte method; /* STORED (for zip only) or DEFLATED */
861c20b4
PM
213
214 /* used by deflate.c: */
215
216 uInt w_size; /* LZ77 window size (32K by default) */
217 uInt w_bits; /* log2(w_size) (8..16) */
218 uInt w_mask; /* w_size - 1 */
219
220 Bytef *window;
221 /* Sliding window. Input bytes are read into the second half of the window,
222 * and move to the first half later to keep a dictionary of at least wSize
223 * bytes. With this organization, matches are limited to a distance of
224 * wSize-MAX_MATCH bytes, but this ensures that IO is always
225 * performed with a length multiple of the block size. Also, it limits
226 * the window size to 64K, which is quite useful on MSDOS.
227 * To do: use the user input buffer as sliding window.
228 */
229
230 ulg window_size;
231 /* Actual size of window: 2*wSize, except when the user input buffer
232 * is directly used as sliding window.
233 */
234
235 Posf *prev;
236 /* Link to older string with same hash index. To limit the size of this
237 * array to 64K, this link is maintained only for the last 32K strings.
238 * An index in this array is thus a window index modulo 32K.
239 */
240
241 Posf *head; /* Heads of the hash chains or NIL. */
242
243 uInt ins_h; /* hash index of string to be inserted */
244 uInt hash_size; /* number of elements in hash table */
245 uInt hash_bits; /* log2(hash_size) */
246 uInt hash_mask; /* hash_size-1 */
247
248 uInt hash_shift;
249 /* Number of bits by which ins_h must be shifted at each input
250 * step. It must be such that after MIN_MATCH steps, the oldest
251 * byte no longer takes part in the hash key, that is:
252 * hash_shift * MIN_MATCH >= hash_bits
253 */
254
255 long block_start;
256 /* Window position at the beginning of the current output block. Gets
257 * negative when the window is moved backwards.
258 */
259
260 uInt match_length; /* length of best match */
261 IPos prev_match; /* previous match */
262 int match_available; /* set if previous match exists */
263 uInt strstart; /* start of string to insert */
264 uInt match_start; /* start of matching string */
265 uInt lookahead; /* number of valid bytes ahead in window */
266
267 uInt prev_length;
268 /* Length of the best match at previous step. Matches not greater than this
269 * are discarded. This is used in the lazy match evaluation.
270 */
271
272 uInt max_chain_length;
273 /* To speed up deflation, hash chains are never searched beyond this
274 * length. A higher limit improves compression ratio but degrades the
275 * speed.
276 */
277
278 uInt max_lazy_match;
279 /* Attempt to find a better match only when the current match is strictly
280 * smaller than this value. This mechanism is used only for compression
281 * levels >= 4.
282 */
283# define max_insert_length max_lazy_match
284 /* Insert new strings in the hash table only if the match length is not
285 * greater than this length. This saves time but degrades compression.
286 * max_insert_length is used only for compression levels <= 3.
287 */
288
289 int level; /* compression level (1..9) */
290 int strategy; /* favor or force Huffman coding*/
291
292 uInt good_match;
293 /* Use a faster search when the previous match is longer than this */
294
295 int nice_match; /* Stop searching when current match exceeds this */
296
297 /* used by trees.c: */
298 /* Didn't use ct_data typedef below to supress compiler warning */
299 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
300 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
301 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
302
303 struct tree_desc_s l_desc; /* desc. for literal tree */
304 struct tree_desc_s d_desc; /* desc. for distance tree */
305 struct tree_desc_s bl_desc; /* desc. for bit length tree */
306
307 ush bl_count[MAX_BITS+1];
308 /* number of codes at each bit length for an optimal tree */
309
310 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
311 int heap_len; /* number of elements in the heap */
312 int heap_max; /* element of largest frequency */
313 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
314 * The same heap array is used to build all trees.
315 */
316
317 uch depth[2*L_CODES+1];
318 /* Depth of each subtree used as tie breaker for trees of equal frequency
319 */
320
321 uchf *l_buf; /* buffer for literals or lengths */
322
323 uInt lit_bufsize;
324 /* Size of match buffer for literals/lengths. There are 4 reasons for
325 * limiting lit_bufsize to 64K:
326 * - frequencies can be kept in 16 bit counters
327 * - if compression is not successful for the first block, all input
328 * data is still in the window so we can still emit a stored block even
329 * when input comes from standard input. (This can also be done for
330 * all blocks if lit_bufsize is not greater than 32K.)
331 * - if compression is not successful for a file smaller than 64K, we can
332 * even emit a stored file instead of a stored block (saving 5 bytes).
333 * This is applicable only for zip (not gzip or zlib).
334 * - creating new Huffman trees less frequently may not provide fast
335 * adaptation to changes in the input data statistics. (Take for
336 * example a binary file with poorly compressible code followed by
337 * a highly compressible string table.) Smaller buffer sizes give
338 * fast adaptation but have of course the overhead of transmitting
339 * trees more frequently.
340 * - I can't count above 4
341 */
342
343 uInt last_lit; /* running index in l_buf */
344
345 ushf *d_buf;
346 /* Buffer for distances. To simplify the code, d_buf and l_buf have
347 * the same number of elements. To use different lengths, an extra flag
348 * array would be necessary.
349 */
350
351 ulg opt_len; /* bit length of current block with optimal trees */
352 ulg static_len; /* bit length of current block with static trees */
353 ulg compressed_len; /* total bit length of compressed file */
354 uInt matches; /* number of string matches in current block */
355 int last_eob_len; /* bit length of EOB code for last block */
356
357#ifdef DEBUG_ZLIB
358 ulg bits_sent; /* bit length of the compressed data */
359#endif
360
361 ush bi_buf;
362 /* Output buffer. bits are inserted starting at the bottom (least
363 * significant bits).
364 */
365 int bi_valid;
366 /* Number of valid bits in bi_buf. All bits above the last valid bit
367 * are always zero.
368 */
369
370 uInt blocks_in_packet;
371 /* Number of blocks produced since the last time Z_PACKET_FLUSH
372 * was used.
373 */
374
375} FAR deflate_state;
376
377/* Output a byte on the stream.
378 * IN assertion: there is enough room in pending_buf.
379 */
380#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
381
382
383#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
384/* Minimum amount of lookahead, except at the end of the input file.
385 * See deflate.c for comments about the MIN_MATCH+1.
386 */
387
388#define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
389/* In order to simplify the code, particularly on 16 bit machines, match
390 * distances are limited to MAX_DIST instead of WSIZE.
391 */
392
393 /* in trees.c */
394local void ct_init OF((deflate_state *s));
395local int ct_tally OF((deflate_state *s, int dist, int lc));
396local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
397 int flush));
398local void ct_align OF((deflate_state *s));
399local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
400 int eof));
401local void ct_stored_type_only OF((deflate_state *s));
402
403
404/*+++++*/
405/* deflate.c -- compress data using the deflation algorithm
406 * Copyright (C) 1995 Jean-loup Gailly.
407 * For conditions of distribution and use, see copyright notice in zlib.h
408 */
409
410/*
411 * ALGORITHM
412 *
413 * The "deflation" process depends on being able to identify portions
414 * of the input text which are identical to earlier input (within a
415 * sliding window trailing behind the input currently being processed).
416 *
417 * The most straightforward technique turns out to be the fastest for
418 * most input files: try all possible matches and select the longest.
419 * The key feature of this algorithm is that insertions into the string
420 * dictionary are very simple and thus fast, and deletions are avoided
421 * completely. Insertions are performed at each input character, whereas
422 * string matches are performed only when the previous match ends. So it
423 * is preferable to spend more time in matches to allow very fast string
424 * insertions and avoid deletions. The matching algorithm for small
425 * strings is inspired from that of Rabin & Karp. A brute force approach
426 * is used to find longer strings when a small match has been found.
427 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
428 * (by Leonid Broukhis).
429 * A previous version of this file used a more sophisticated algorithm
430 * (by Fiala and Greene) which is guaranteed to run in linear amortized
431 * time, but has a larger average cost, uses more memory and is patented.
432 * However the F&G algorithm may be faster for some highly redundant
433 * files if the parameter max_chain_length (described below) is too large.
434 *
435 * ACKNOWLEDGEMENTS
436 *
437 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
438 * I found it in 'freeze' written by Leonid Broukhis.
439 * Thanks to many people for bug reports and testing.
440 *
441 * REFERENCES
442 *
443 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
444 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
445 *
446 * A description of the Rabin and Karp algorithm is given in the book
447 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
448 *
449 * Fiala,E.R., and Greene,D.H.
450 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
451 *
452 */
453
454/* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */
455
ef21f8db 456char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
861c20b4
PM
457/*
458 If you use the zlib library in a product, an acknowledgment is welcome
459 in the documentation of your product. If for some reason you cannot
460 include such an acknowledgment, I would appreciate that you keep this
461 copyright string in the executable of your product.
462 */
463
464#define NIL 0
465/* Tail of hash chains */
466
467#ifndef TOO_FAR
468# define TOO_FAR 4096
469#endif
470/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
471
472#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
473/* Minimum amount of lookahead, except at the end of the input file.
474 * See deflate.c for comments about the MIN_MATCH+1.
475 */
476
477/* Values for max_lazy_match, good_match and max_chain_length, depending on
478 * the desired pack level (0..9). The values given below have been tuned to
479 * exclude worst case performance for pathological files. Better values may be
480 * found for specific files.
481 */
482
483typedef struct config_s {
484 ush good_length; /* reduce lazy search above this match length */
485 ush max_lazy; /* do not perform lazy search above this match length */
486 ush nice_length; /* quit search above this match length */
487 ush max_chain;
488} config;
489
490local config configuration_table[10] = {
491/* good lazy nice chain */
492/* 0 */ {0, 0, 0, 0}, /* store only */
493/* 1 */ {4, 4, 8, 4}, /* maximum speed, no lazy matches */
494/* 2 */ {4, 5, 16, 8},
495/* 3 */ {4, 6, 32, 32},
496
497/* 4 */ {4, 4, 16, 16}, /* lazy matches */
498/* 5 */ {8, 16, 32, 32},
499/* 6 */ {8, 16, 128, 128},
500/* 7 */ {8, 32, 128, 256},
501/* 8 */ {32, 128, 258, 1024},
502/* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
503
504/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
505 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
506 * meaning.
507 */
508
509#define EQUAL 0
510/* result of memcmp for equal strings */
511
512/* ===========================================================================
513 * Prototypes for local functions.
514 */
515
516local void fill_window OF((deflate_state *s));
517local int deflate_fast OF((deflate_state *s, int flush));
518local int deflate_slow OF((deflate_state *s, int flush));
519local void lm_init OF((deflate_state *s));
520local int longest_match OF((deflate_state *s, IPos cur_match));
521local void putShortMSB OF((deflate_state *s, uInt b));
522local void flush_pending OF((z_stream *strm));
ef21f8db 523local int zread_buf OF((z_stream *strm, charf *buf, unsigned size));
861c20b4
PM
524#ifdef ASMV
525 void match_init OF((void)); /* asm code initialization */
526#endif
527
528#ifdef DEBUG_ZLIB
529local void check_match OF((deflate_state *s, IPos start, IPos match,
530 int length));
531#endif
532
533
534/* ===========================================================================
535 * Update a hash value with the given input byte
536 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
537 * input characters, so that a running hash key can be computed from the
538 * previous key instead of complete recalculation each time.
539 */
540#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
541
542
543/* ===========================================================================
544 * Insert string str in the dictionary and set match_head to the previous head
545 * of the hash chain (the most recent string with same hash key). Return
546 * the previous length of the hash chain.
547 * IN assertion: all calls to to INSERT_STRING are made with consecutive
548 * input characters and the first MIN_MATCH bytes of str are valid
549 * (except for the last MIN_MATCH-1 bytes of the input file).
550 */
551#define INSERT_STRING(s, str, match_head) \
552 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
553 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
554 s->head[s->ins_h] = (str))
555
556/* ===========================================================================
557 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
558 * prev[] will be initialized on the fly.
559 */
560#define CLEAR_HASH(s) \
561 s->head[s->hash_size-1] = NIL; \
562 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
563
564/* ========================================================================= */
565int deflateInit (strm, level)
566 z_stream *strm;
567 int level;
568{
f8062104 569 return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 0);
861c20b4
PM
570 /* To do: ignore strm->next_in if we use it as window */
571}
572
573/* ========================================================================= */
f8062104 574int deflateInit2 (strm, level, method, windowBits, memLevel, strategy)
861c20b4
PM
575 z_stream *strm;
576 int level;
577 int method;
578 int windowBits;
579 int memLevel;
580 int strategy;
861c20b4
PM
581{
582 deflate_state *s;
583 int noheader = 0;
584
585 if (strm == Z_NULL) return Z_STREAM_ERROR;
586
587 strm->msg = Z_NULL;
588/* if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */
589/* if (strm->zfree == Z_NULL) strm->zfree = zcfree; */
590
591 if (level == Z_DEFAULT_COMPRESSION) level = 6;
592
593 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
594 noheader = 1;
595 windowBits = -windowBits;
596 }
597 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
598 windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
599 return Z_STREAM_ERROR;
600 }
601 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
602 if (s == Z_NULL) return Z_MEM_ERROR;
603 strm->state = (struct internal_state FAR *)s;
604 s->strm = strm;
605
606 s->noheader = noheader;
607 s->w_bits = windowBits;
608 s->w_size = 1 << s->w_bits;
609 s->w_mask = s->w_size - 1;
610
611 s->hash_bits = memLevel + 7;
612 s->hash_size = 1 << s->hash_bits;
613 s->hash_mask = s->hash_size - 1;
614 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
615
616 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
617 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
618 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
619
620 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
621
622 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush));
623
624 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
625 s->pending_buf == Z_NULL) {
626 strm->msg = z_errmsg[1-Z_MEM_ERROR];
627 deflateEnd (strm);
628 return Z_MEM_ERROR;
629 }
630 s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]);
631 s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]);
632 /* We overlay pending_buf and d_buf+l_buf. This works since the average
633 * output size for (length,distance) codes is <= 32 bits (worst case
634 * is 15+15+13=33).
635 */
636
637 s->level = level;
638 s->strategy = strategy;
639 s->method = (Byte)method;
861c20b4
PM
640 s->blocks_in_packet = 0;
641
642 return deflateReset(strm);
643}
644
645/* ========================================================================= */
646int deflateReset (strm)
647 z_stream *strm;
648{
649 deflate_state *s;
650
651 if (strm == Z_NULL || strm->state == Z_NULL ||
652 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
653
654 strm->total_in = strm->total_out = 0;
655 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
656 strm->data_type = Z_UNKNOWN;
657
658 s = (deflate_state *)strm->state;
659 s->pending = 0;
660 s->pending_out = s->pending_buf;
661
662 if (s->noheader < 0) {
663 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
664 }
665 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
666 s->adler = 1;
667
668 ct_init(s);
669 lm_init(s);
670
671 return Z_OK;
672}
673
674/* =========================================================================
675 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
676 * IN assertion: the stream state is correct and there is enough room in
677 * pending_buf.
678 */
679local void putShortMSB (s, b)
680 deflate_state *s;
681 uInt b;
682{
683 put_byte(s, (Byte)(b >> 8));
684 put_byte(s, (Byte)(b & 0xff));
685}
686
687/* =========================================================================
688 * Flush as much pending output as possible.
689 */
690local void flush_pending(strm)
691 z_stream *strm;
692{
693 deflate_state *state = (deflate_state *) strm->state;
694 unsigned len = state->pending;
695
696 if (len > strm->avail_out) len = strm->avail_out;
697 if (len == 0) return;
698
699 if (strm->next_out != NULL) {
700 zmemcpy(strm->next_out, state->pending_out, len);
701 strm->next_out += len;
702 }
703 state->pending_out += len;
704 strm->total_out += len;
705 strm->avail_out -= len;
706 state->pending -= len;
707 if (state->pending == 0) {
708 state->pending_out = state->pending_buf;
709 }
710}
711
712/* ========================================================================= */
713int deflate (strm, flush)
714 z_stream *strm;
715 int flush;
716{
717 deflate_state *state = (deflate_state *) strm->state;
718
719 if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
720
721 if (strm->next_in == Z_NULL && strm->avail_in != 0) {
722 ERR_RETURN(strm, Z_STREAM_ERROR);
723 }
724 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
725
726 state->strm = strm; /* just in case */
727
728 /* Write the zlib header */
729 if (state->status == INIT_STATE) {
730
731 uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8;
732 uInt level_flags = (state->level-1) >> 1;
733
734 if (level_flags > 3) level_flags = 3;
735 header |= (level_flags << 6);
736 header += 31 - (header % 31);
737
738 state->status = BUSY_STATE;
739 putShortMSB(state, header);
740 }
741
742 /* Flush as much pending output as possible */
743 if (state->pending != 0) {
744 flush_pending(strm);
745 if (strm->avail_out == 0) return Z_OK;
746 }
747
748 /* If we came back in here to get the last output from
749 * a previous flush, we're done for now.
750 */
751 if (state->status == FLUSH_STATE) {
752 state->status = BUSY_STATE;
753 if (flush != Z_NO_FLUSH && flush != Z_FINISH)
754 return Z_OK;
755 }
756
757 /* User must not provide more input after the first FINISH: */
758 if (state->status == FINISH_STATE && strm->avail_in != 0) {
759 ERR_RETURN(strm, Z_BUF_ERROR);
760 }
761
762 /* Start a new block or continue the current one.
763 */
764 if (strm->avail_in != 0 || state->lookahead != 0 ||
765 (flush == Z_FINISH && state->status != FINISH_STATE)) {
766 int quit;
767
768 if (flush == Z_FINISH) {
769 state->status = FINISH_STATE;
770 }
771 if (state->level <= 3) {
772 quit = deflate_fast(state, flush);
773 } else {
774 quit = deflate_slow(state, flush);
775 }
776 if (quit || strm->avail_out == 0)
777 return Z_OK;
778 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
779 * of deflate should use the same flush parameter to make sure
780 * that the flush is complete. So we don't have to output an
781 * empty block here, this will be done at next call. This also
782 * ensures that for a very small output buffer, we emit at most
783 * one empty block.
784 */
785 }
786
787 /* If a flush was requested, we have a little more to output now. */
788 if (flush != Z_NO_FLUSH && flush != Z_FINISH
789 && state->status != FINISH_STATE) {
790 switch (flush) {
791 case Z_PARTIAL_FLUSH:
792 ct_align(state);
793 break;
794 case Z_PACKET_FLUSH:
795 /* Output just the 3-bit `stored' block type value,
796 but not a zero length. */
797 ct_stored_type_only(state);
798 break;
799 default:
800 ct_stored_block(state, (char*)0, 0L, 0);
801 /* For a full flush, this empty block will be recognized
802 * as a special marker by inflate_sync().
803 */
804 if (flush == Z_FULL_FLUSH) {
805 CLEAR_HASH(state); /* forget history */
806 }
807 }
808 flush_pending(strm);
809 if (strm->avail_out == 0) {
810 /* We'll have to come back to get the rest of the output;
811 * this ensures we don't output a second zero-length stored
812 * block (or whatever).
813 */
814 state->status = FLUSH_STATE;
815 return Z_OK;
816 }
817 }
818
819 Assert(strm->avail_out > 0, "bug2");
820
821 if (flush != Z_FINISH) return Z_OK;
822 if (state->noheader) return Z_STREAM_END;
823
824 /* Write the zlib trailer (adler32) */
825 putShortMSB(state, (uInt)(state->adler >> 16));
826 putShortMSB(state, (uInt)(state->adler & 0xffff));
827 flush_pending(strm);
828 /* If avail_out is zero, the application will call deflate again
829 * to flush the rest.
830 */
831 state->noheader = -1; /* write the trailer only once! */
832 return state->pending != 0 ? Z_OK : Z_STREAM_END;
833}
834
835/* ========================================================================= */
836int deflateEnd (strm)
837 z_stream *strm;
838{
839 deflate_state *state = (deflate_state *) strm->state;
840
841 if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
842
843 TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte));
844 TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos));
845 TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos));
846 TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush));
847
848 ZFREE(strm, state, sizeof(deflate_state));
849 strm->state = Z_NULL;
850
851 return Z_OK;
852}
853
854/* ===========================================================================
855 * Read a new buffer from the current input stream, update the adler32
856 * and total number of bytes read.
857 */
ef21f8db 858local int zread_buf(strm, buf, size)
861c20b4
PM
859 z_stream *strm;
860 charf *buf;
861 unsigned size;
862{
863 unsigned len = strm->avail_in;
864 deflate_state *state = (deflate_state *) strm->state;
865
866 if (len > size) len = size;
867 if (len == 0) return 0;
868
869 strm->avail_in -= len;
870
871 if (!state->noheader) {
872 state->adler = adler32(state->adler, strm->next_in, len);
873 }
874 zmemcpy(buf, strm->next_in, len);
875 strm->next_in += len;
876 strm->total_in += len;
877
878 return (int)len;
879}
880
881/* ===========================================================================
882 * Initialize the "longest match" routines for a new zlib stream
883 */
884local void lm_init (s)
885 deflate_state *s;
886{
887 s->window_size = (ulg)2L*s->w_size;
888
889 CLEAR_HASH(s);
890
891 /* Set the default configuration parameters:
892 */
893 s->max_lazy_match = configuration_table[s->level].max_lazy;
894 s->good_match = configuration_table[s->level].good_length;
895 s->nice_match = configuration_table[s->level].nice_length;
896 s->max_chain_length = configuration_table[s->level].max_chain;
897
898 s->strstart = 0;
899 s->block_start = 0L;
900 s->lookahead = 0;
901 s->match_length = MIN_MATCH-1;
902 s->match_available = 0;
903 s->ins_h = 0;
904#ifdef ASMV
905 match_init(); /* initialize the asm code */
906#endif
907}
908
909/* ===========================================================================
910 * Set match_start to the longest match starting at the given string and
911 * return its length. Matches shorter or equal to prev_length are discarded,
912 * in which case the result is equal to prev_length and match_start is
913 * garbage.
914 * IN assertions: cur_match is the head of the hash chain for the current
915 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
916 */
917#ifndef ASMV
918/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
919 * match.S. The code will be functionally equivalent.
920 */
921local int longest_match(s, cur_match)
922 deflate_state *s;
923 IPos cur_match; /* current match */
924{
925 unsigned chain_length = s->max_chain_length;/* max hash chain length */
926 register Bytef *scan = s->window + s->strstart; /* current string */
927 register Bytef *match; /* matched string */
928 register int len; /* length of current match */
929 int best_len = s->prev_length; /* best match length so far */
930 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
931 s->strstart - (IPos)MAX_DIST(s) : NIL;
932 /* Stop when cur_match becomes <= limit. To simplify the code,
933 * we prevent matches with the string of window index 0.
934 */
935 Posf *prev = s->prev;
936 uInt wmask = s->w_mask;
937
938#ifdef UNALIGNED_OK
939 /* Compare two bytes at a time. Note: this is not always beneficial.
940 * Try with and without -DUNALIGNED_OK to check.
941 */
942 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
943 register ush scan_start = *(ushf*)scan;
944 register ush scan_end = *(ushf*)(scan+best_len-1);
945#else
946 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
947 register Byte scan_end1 = scan[best_len-1];
948 register Byte scan_end = scan[best_len];
949#endif
950
951 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
952 * It is easy to get rid of this optimization if necessary.
953 */
954 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
955
956 /* Do not waste too much time if we already have a good match: */
957 if (s->prev_length >= s->good_match) {
958 chain_length >>= 2;
959 }
960 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
961
962 do {
963 Assert(cur_match < s->strstart, "no future");
964 match = s->window + cur_match;
965
966 /* Skip to next match if the match length cannot increase
967 * or if the match length is less than 2:
968 */
969#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
970 /* This code assumes sizeof(unsigned short) == 2. Do not use
971 * UNALIGNED_OK if your compiler uses a different size.
972 */
973 if (*(ushf*)(match+best_len-1) != scan_end ||
974 *(ushf*)match != scan_start) continue;
975
976 /* It is not necessary to compare scan[2] and match[2] since they are
977 * always equal when the other bytes match, given that the hash keys
978 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
979 * strstart+3, +5, ... up to strstart+257. We check for insufficient
980 * lookahead only every 4th comparison; the 128th check will be made
981 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
982 * necessary to put more guard bytes at the end of the window, or
983 * to check more often for insufficient lookahead.
984 */
985 Assert(scan[2] == match[2], "scan[2]?");
986 scan++, match++;
987 do {
988 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
989 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
990 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
991 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
992 scan < strend);
993 /* The funny "do {}" generates better code on most compilers */
994
995 /* Here, scan <= window+strstart+257 */
996 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
997 if (*scan == *match) scan++;
998
999 len = (MAX_MATCH - 1) - (int)(strend-scan);
1000 scan = strend - (MAX_MATCH-1);
1001
1002#else /* UNALIGNED_OK */
1003
1004 if (match[best_len] != scan_end ||
1005 match[best_len-1] != scan_end1 ||
1006 *match != *scan ||
1007 *++match != scan[1]) continue;
1008
1009 /* The check at best_len-1 can be removed because it will be made
1010 * again later. (This heuristic is not always a win.)
1011 * It is not necessary to compare scan[2] and match[2] since they
1012 * are always equal when the other bytes match, given that
1013 * the hash keys are equal and that HASH_BITS >= 8.
1014 */
1015 scan += 2, match++;
1016 Assert(*scan == *match, "match[2]?");
1017
1018 /* We check for insufficient lookahead only every 8th comparison;
1019 * the 256th check will be made at strstart+258.
1020 */
1021 do {
1022 } while (*++scan == *++match && *++scan == *++match &&
1023 *++scan == *++match && *++scan == *++match &&
1024 *++scan == *++match && *++scan == *++match &&
1025 *++scan == *++match && *++scan == *++match &&
1026 scan < strend);
1027
1028 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1029
1030 len = MAX_MATCH - (int)(strend - scan);
1031 scan = strend - MAX_MATCH;
1032
1033#endif /* UNALIGNED_OK */
1034
1035 if (len > best_len) {
1036 s->match_start = cur_match;
1037 best_len = len;
1038 if (len >= s->nice_match) break;
1039#ifdef UNALIGNED_OK
1040 scan_end = *(ushf*)(scan+best_len-1);
1041#else
1042 scan_end1 = scan[best_len-1];
1043 scan_end = scan[best_len];
1044#endif
1045 }
1046 } while ((cur_match = prev[cur_match & wmask]) > limit
1047 && --chain_length != 0);
1048
1049 return best_len;
1050}
1051#endif /* ASMV */
1052
1053#ifdef DEBUG_ZLIB
1054/* ===========================================================================
1055 * Check that the match at match_start is indeed a match.
1056 */
1057local void check_match(s, start, match, length)
1058 deflate_state *s;
1059 IPos start, match;
1060 int length;
1061{
1062 /* check that the match is indeed a match */
1063 if (memcmp((charf *)s->window + match,
1064 (charf *)s->window + start, length) != EQUAL) {
1065 fprintf(stderr,
1066 " start %u, match %u, length %d\n",
1067 start, match, length);
1068 do { fprintf(stderr, "%c%c", s->window[match++],
1069 s->window[start++]); } while (--length != 0);
1070 z_error("invalid match");
1071 }
1072 if (verbose > 1) {
1073 fprintf(stderr,"\\[%d,%d]", start-match, length);
1074 do { putc(s->window[start++], stderr); } while (--length != 0);
1075 }
1076}
1077#else
1078# define check_match(s, start, match, length)
1079#endif
1080
1081/* ===========================================================================
1082 * Fill the window when the lookahead becomes insufficient.
1083 * Updates strstart and lookahead.
1084 *
1085 * IN assertion: lookahead < MIN_LOOKAHEAD
1086 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1087 * At least one byte has been read, or avail_in == 0; reads are
1088 * performed for at least two bytes (required for the zip translate_eol
1089 * option -- not supported here).
1090 */
1091local void fill_window(s)
1092 deflate_state *s;
1093{
1094 register unsigned n, m;
1095 register Posf *p;
1096 unsigned more; /* Amount of free space at the end of the window. */
1097 uInt wsize = s->w_size;
1098
1099 do {
1100 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1101
1102 /* Deal with !@#$% 64K limit: */
1103 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1104 more = wsize;
1105 } else if (more == (unsigned)(-1)) {
1106 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1107 * and lookahead == 1 (input done one byte at time)
1108 */
1109 more--;
1110
1111 /* If the window is almost full and there is insufficient lookahead,
1112 * move the upper half to the lower one to make room in the upper half.
1113 */
1114 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1115
1116 /* By the IN assertion, the window is not empty so we can't confuse
1117 * more == 0 with more == 64K on a 16 bit machine.
1118 */
1119 zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1120 (unsigned)wsize);
1121 s->match_start -= wsize;
1122 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1123
1124 s->block_start -= (long) wsize;
1125
1126 /* Slide the hash table (could be avoided with 32 bit values
1127 at the expense of memory usage):
1128 */
1129 n = s->hash_size;
1130 p = &s->head[n];
1131 do {
1132 m = *--p;
1133 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1134 } while (--n);
1135
1136 n = wsize;
1137 p = &s->prev[n];
1138 do {
1139 m = *--p;
1140 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1141 /* If n is not on any hash chain, prev[n] is garbage but
1142 * its value will never be used.
1143 */
1144 } while (--n);
1145
1146 more += wsize;
1147 }
1148 if (s->strm->avail_in == 0) return;
1149
1150 /* If there was no sliding:
1151 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1152 * more == window_size - lookahead - strstart
1153 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1154 * => more >= window_size - 2*WSIZE + 2
1155 * In the BIG_MEM or MMAP case (not yet supported),
1156 * window_size == input_size + MIN_LOOKAHEAD &&
1157 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1158 * Otherwise, window_size == 2*WSIZE so more >= 2.
1159 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1160 */
1161 Assert(more >= 2, "more < 2");
1162
ef21f8db 1163 n = zread_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
861c20b4
PM
1164 more);
1165 s->lookahead += n;
1166
1167 /* Initialize the hash value now that we have some input: */
1168 if (s->lookahead >= MIN_MATCH) {
1169 s->ins_h = s->window[s->strstart];
1170 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1171#if MIN_MATCH != 3
1172 Call UPDATE_HASH() MIN_MATCH-3 more times
1173#endif
1174 }
1175 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1176 * but this is not important since only literal bytes will be emitted.
1177 */
1178
1179 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1180}
1181
1182/* ===========================================================================
1183 * Flush the current block, with given end-of-file flag.
1184 * IN assertion: strstart is set to the end of the current match.
1185 */
1186#define FLUSH_BLOCK_ONLY(s, flush) { \
1187 ct_flush_block(s, (s->block_start >= 0L ? \
1188 (charf *)&s->window[(unsigned)s->block_start] : \
1189 (charf *)Z_NULL), (long)s->strstart - s->block_start, (flush)); \
1190 s->block_start = s->strstart; \
1191 flush_pending(s->strm); \
1192 Tracev((stderr,"[FLUSH]")); \
1193}
1194
1195/* Same but force premature exit if necessary. */
1196#define FLUSH_BLOCK(s, flush) { \
1197 FLUSH_BLOCK_ONLY(s, flush); \
1198 if (s->strm->avail_out == 0) return 1; \
1199}
1200
1201/* ===========================================================================
1202 * Compress as much as possible from the input stream, return true if
1203 * processing was terminated prematurely (no more input or output space).
1204 * This function does not perform lazy evaluationof matches and inserts
1205 * new strings in the dictionary only for unmatched strings or for short
1206 * matches. It is used only for the fast compression options.
1207 */
1208local int deflate_fast(s, flush)
1209 deflate_state *s;
1210 int flush;
1211{
1212 IPos hash_head = NIL; /* head of the hash chain */
1213 int bflush; /* set if current block must be flushed */
1214
1215 s->prev_length = MIN_MATCH-1;
1216
1217 for (;;) {
1218 /* Make sure that we always have enough lookahead, except
1219 * at the end of the input file. We need MAX_MATCH bytes
1220 * for the next match, plus MIN_MATCH bytes to insert the
1221 * string following the next match.
1222 */
1223 if (s->lookahead < MIN_LOOKAHEAD) {
1224 fill_window(s);
1225 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1226
1227 if (s->lookahead == 0) break; /* flush the current block */
1228 }
1229
1230 /* Insert the string window[strstart .. strstart+2] in the
1231 * dictionary, and set hash_head to the head of the hash chain:
1232 */
1233 if (s->lookahead >= MIN_MATCH) {
1234 INSERT_STRING(s, s->strstart, hash_head);
1235 }
1236
1237 /* Find the longest match, discarding those <= prev_length.
1238 * At this point we have always match_length < MIN_MATCH
1239 */
1240 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1241 /* To simplify the code, we prevent matches with the string
1242 * of window index 0 (in particular we have to avoid a match
1243 * of the string with itself at the start of the input file).
1244 */
1245 if (s->strategy != Z_HUFFMAN_ONLY) {
1246 s->match_length = longest_match (s, hash_head);
1247 }
1248 /* longest_match() sets match_start */
1249
1250 if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1251 }
1252 if (s->match_length >= MIN_MATCH) {
1253 check_match(s, s->strstart, s->match_start, s->match_length);
1254
1255 bflush = ct_tally(s, s->strstart - s->match_start,
1256 s->match_length - MIN_MATCH);
1257
1258 s->lookahead -= s->match_length;
1259
1260 /* Insert new strings in the hash table only if the match length
1261 * is not too large. This saves time but degrades compression.
1262 */
1263 if (s->match_length <= s->max_insert_length &&
1264 s->lookahead >= MIN_MATCH) {
1265 s->match_length--; /* string at strstart already in hash table */
1266 do {
1267 s->strstart++;
1268 INSERT_STRING(s, s->strstart, hash_head);
1269 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1270 * always MIN_MATCH bytes ahead.
1271 */
1272 } while (--s->match_length != 0);
1273 s->strstart++;
1274 } else {
1275 s->strstart += s->match_length;
1276 s->match_length = 0;
1277 s->ins_h = s->window[s->strstart];
1278 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1279#if MIN_MATCH != 3
1280 Call UPDATE_HASH() MIN_MATCH-3 more times
1281#endif
1282 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1283 * matter since it will be recomputed at next deflate call.
1284 */
1285 }
1286 } else {
1287 /* No match, output a literal byte */
1288 Tracevv((stderr,"%c", s->window[s->strstart]));
1289 bflush = ct_tally (s, 0, s->window[s->strstart]);
1290 s->lookahead--;
1291 s->strstart++;
1292 }
1293 if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1294 }
1295 FLUSH_BLOCK(s, flush);
1296 return 0; /* normal exit */
1297}
1298
1299/* ===========================================================================
1300 * Same as above, but achieves better compression. We use a lazy
1301 * evaluation for matches: a match is finally adopted only if there is
1302 * no better match at the next window position.
1303 */
1304local int deflate_slow(s, flush)
1305 deflate_state *s;
1306 int flush;
1307{
1308 IPos hash_head = NIL; /* head of hash chain */
1309 int bflush; /* set if current block must be flushed */
1310
1311 /* Process the input block. */
1312 for (;;) {
1313 /* Make sure that we always have enough lookahead, except
1314 * at the end of the input file. We need MAX_MATCH bytes
1315 * for the next match, plus MIN_MATCH bytes to insert the
1316 * string following the next match.
1317 */
1318 if (s->lookahead < MIN_LOOKAHEAD) {
1319 fill_window(s);
1320 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1321
1322 if (s->lookahead == 0) break; /* flush the current block */
1323 }
1324
1325 /* Insert the string window[strstart .. strstart+2] in the
1326 * dictionary, and set hash_head to the head of the hash chain:
1327 */
1328 if (s->lookahead >= MIN_MATCH) {
1329 INSERT_STRING(s, s->strstart, hash_head);
1330 }
1331
1332 if (flush == Z_INSERT_ONLY) {
1333 s->strstart++;
1334 s->lookahead--;
1335 continue;
1336 }
1337
1338 /* Find the longest match, discarding those <= prev_length.
1339 */
1340 s->prev_length = s->match_length, s->prev_match = s->match_start;
1341 s->match_length = MIN_MATCH-1;
1342
1343 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1344 s->strstart - hash_head <= MAX_DIST(s)) {
1345 /* To simplify the code, we prevent matches with the string
1346 * of window index 0 (in particular we have to avoid a match
1347 * of the string with itself at the start of the input file).
1348 */
1349 if (s->strategy != Z_HUFFMAN_ONLY) {
1350 s->match_length = longest_match (s, hash_head);
1351 }
1352 /* longest_match() sets match_start */
1353 if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1354
1355 if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1356 (s->match_length == MIN_MATCH &&
1357 s->strstart - s->match_start > TOO_FAR))) {
1358
1359 /* If prev_match is also MIN_MATCH, match_start is garbage
1360 * but we will ignore the current match anyway.
1361 */
1362 s->match_length = MIN_MATCH-1;
1363 }
1364 }
1365 /* If there was a match at the previous step and the current
1366 * match is not better, output the previous match:
1367 */
1368 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1369 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1370 /* Do not insert strings in hash table beyond this. */
1371
1372 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1373
1374 bflush = ct_tally(s, s->strstart -1 - s->prev_match,
1375 s->prev_length - MIN_MATCH);
1376
1377 /* Insert in hash table all strings up to the end of the match.
1378 * strstart-1 and strstart are already inserted. If there is not
1379 * enough lookahead, the last two strings are not inserted in
1380 * the hash table.
1381 */
1382 s->lookahead -= s->prev_length-1;
1383 s->prev_length -= 2;
1384 do {
1385 if (++s->strstart <= max_insert) {
1386 INSERT_STRING(s, s->strstart, hash_head);
1387 }
1388 } while (--s->prev_length != 0);
1389 s->match_available = 0;
1390 s->match_length = MIN_MATCH-1;
1391 s->strstart++;
1392
1393 if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1394
1395 } else if (s->match_available) {
1396 /* If there was no match at the previous position, output a
1397 * single literal. If there was a match but the current match
1398 * is longer, truncate the previous match to a single literal.
1399 */
1400 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1401 if (ct_tally (s, 0, s->window[s->strstart-1])) {
1402 FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH);
1403 }
1404 s->strstart++;
1405 s->lookahead--;
1406 if (s->strm->avail_out == 0) return 1;
1407 } else {
1408 /* There is no previous match to compare with, wait for
1409 * the next step to decide.
1410 */
1411 s->match_available = 1;
1412 s->strstart++;
1413 s->lookahead--;
1414 }
1415 }
1416 if (flush == Z_INSERT_ONLY) {
1417 s->block_start = s->strstart;
1418 return 1;
1419 }
1420 Assert (flush != Z_NO_FLUSH, "no flush?");
1421 if (s->match_available) {
1422 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1423 ct_tally (s, 0, s->window[s->strstart-1]);
1424 s->match_available = 0;
1425 }
1426 FLUSH_BLOCK(s, flush);
1427 return 0;
1428}
1429
1430
1431/*+++++*/
1432/* trees.c -- output deflated data using Huffman coding
1433 * Copyright (C) 1995 Jean-loup Gailly
1434 * For conditions of distribution and use, see copyright notice in zlib.h
1435 */
1436
1437/*
1438 * ALGORITHM
1439 *
1440 * The "deflation" process uses several Huffman trees. The more
1441 * common source values are represented by shorter bit sequences.
1442 *
1443 * Each code tree is stored in a compressed form which is itself
1444 * a Huffman encoding of the lengths of all the code strings (in
1445 * ascending order by source values). The actual code strings are
1446 * reconstructed from the lengths in the inflate process, as described
1447 * in the deflate specification.
1448 *
1449 * REFERENCES
1450 *
1451 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1452 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1453 *
1454 * Storer, James A.
1455 * Data Compression: Methods and Theory, pp. 49-50.
1456 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1457 *
1458 * Sedgewick, R.
1459 * Algorithms, p290.
1460 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1461 */
1462
1463/* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */
1464
1465#ifdef DEBUG_ZLIB
1466# include <ctype.h>
1467#endif
1468
1469/* ===========================================================================
1470 * Constants
1471 */
1472
1473#define MAX_BL_BITS 7
1474/* Bit length codes must not exceed MAX_BL_BITS bits */
1475
1476#define END_BLOCK 256
1477/* end of block literal code */
1478
1479#define REP_3_6 16
1480/* repeat previous bit length 3-6 times (2 bits of repeat count) */
1481
1482#define REPZ_3_10 17
1483/* repeat a zero length 3-10 times (3 bits of repeat count) */
1484
1485#define REPZ_11_138 18
1486/* repeat a zero length 11-138 times (7 bits of repeat count) */
1487
1488local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1489 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1490
1491local int extra_dbits[D_CODES] /* extra bits for each distance code */
1492 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1493
1494local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1495 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1496
1497local uch bl_order[BL_CODES]
1498 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1499/* The lengths of the bit length codes are sent in order of decreasing
1500 * probability, to avoid transmitting the lengths for unused bit length codes.
1501 */
1502
1503#define Buf_size (8 * 2*sizeof(char))
1504/* Number of bits used within bi_buf. (bi_buf might be implemented on
1505 * more than 16 bits on some systems.)
1506 */
1507
1508/* ===========================================================================
1509 * Local data. These are initialized only once.
1510 * To do: initialize at compile time to be completely reentrant. ???
1511 */
1512
1513local ct_data static_ltree[L_CODES+2];
1514/* The static literal tree. Since the bit lengths are imposed, there is no
1515 * need for the L_CODES extra codes used during heap construction. However
1516 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
1517 * below).
1518 */
1519
1520local ct_data static_dtree[D_CODES];
1521/* The static distance tree. (Actually a trivial tree since all codes use
1522 * 5 bits.)
1523 */
1524
1525local uch dist_code[512];
1526/* distance codes. The first 256 values correspond to the distances
1527 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1528 * the 15 bit distances.
1529 */
1530
1531local uch length_code[MAX_MATCH-MIN_MATCH+1];
1532/* length code for each normalized match length (0 == MIN_MATCH) */
1533
1534local int base_length[LENGTH_CODES];
1535/* First normalized length for each code (0 = MIN_MATCH) */
1536
1537local int base_dist[D_CODES];
1538/* First normalized distance for each code (0 = distance of 1) */
1539
1540struct static_tree_desc_s {
1541 ct_data *static_tree; /* static tree or NULL */
1542 intf *extra_bits; /* extra bits for each code or NULL */
1543 int extra_base; /* base index for extra_bits */
1544 int elems; /* max number of elements in the tree */
1545 int max_length; /* max bit length for the codes */
1546};
1547
1548local static_tree_desc static_l_desc =
1549{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1550
1551local static_tree_desc static_d_desc =
1552{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1553
1554local static_tree_desc static_bl_desc =
1555{(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1556
1557/* ===========================================================================
1558 * Local (static) routines in this file.
1559 */
1560
1561local void ct_static_init OF((void));
1562local void init_block OF((deflate_state *s));
1563local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1564local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1565local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1566local void build_tree OF((deflate_state *s, tree_desc *desc));
1567local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1568local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1569local int build_bl_tree OF((deflate_state *s));
1570local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1571 int blcodes));
1572local void compress_block OF((deflate_state *s, ct_data *ltree,
1573 ct_data *dtree));
1574local void set_data_type OF((deflate_state *s));
1575local unsigned bi_reverse OF((unsigned value, int length));
1576local void bi_windup OF((deflate_state *s));
1577local void bi_flush OF((deflate_state *s));
1578local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1579 int header));
1580
1581#ifndef DEBUG_ZLIB
1582# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1583 /* Send a code of the given tree. c and tree must not have side effects */
1584
1585#else /* DEBUG_ZLIB */
1586# define send_code(s, c, tree) \
1587 { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
1588 send_bits(s, tree[c].Code, tree[c].Len); }
1589#endif
1590
1591#define d_code(dist) \
1592 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1593/* Mapping from a distance to a distance code. dist is the distance - 1 and
1594 * must not have side effects. dist_code[256] and dist_code[257] are never
1595 * used.
1596 */
1597
1598/* ===========================================================================
1599 * Output a short LSB first on the stream.
1600 * IN assertion: there is enough room in pendingBuf.
1601 */
1602#define put_short(s, w) { \
1603 put_byte(s, (uch)((w) & 0xff)); \
1604 put_byte(s, (uch)((ush)(w) >> 8)); \
1605}
1606
1607/* ===========================================================================
1608 * Send a value on a given number of bits.
1609 * IN assertion: length <= 16 and value fits in length bits.
1610 */
1611#ifdef DEBUG_ZLIB
1612local void send_bits OF((deflate_state *s, int value, int length));
1613
1614local void send_bits(s, value, length)
1615 deflate_state *s;
1616 int value; /* value to send */
1617 int length; /* number of bits */
1618{
1619 Tracev((stderr," l %2d v %4x ", length, value));
1620 Assert(length > 0 && length <= 15, "invalid length");
1621 s->bits_sent += (ulg)length;
1622
1623 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
1624 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
1625 * unused bits in value.
1626 */
1627 if (s->bi_valid > (int)Buf_size - length) {
1628 s->bi_buf |= (value << s->bi_valid);
1629 put_short(s, s->bi_buf);
1630 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
1631 s->bi_valid += length - Buf_size;
1632 } else {
1633 s->bi_buf |= value << s->bi_valid;
1634 s->bi_valid += length;
1635 }
1636}
1637#else /* !DEBUG_ZLIB */
1638
1639#define send_bits(s, value, length) \
1640{ int len = length;\
1641 if (s->bi_valid > (int)Buf_size - len) {\
1642 int val = value;\
1643 s->bi_buf |= (val << s->bi_valid);\
1644 put_short(s, s->bi_buf);\
1645 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
1646 s->bi_valid += len - Buf_size;\
1647 } else {\
1648 s->bi_buf |= (value) << s->bi_valid;\
1649 s->bi_valid += len;\
1650 }\
1651}
1652#endif /* DEBUG_ZLIB */
1653
1654
861c20b4
PM
1655/* the arguments must not have side effects */
1656
1657/* ===========================================================================
1658 * Initialize the various 'constant' tables.
1659 * To do: do this at compile time.
1660 */
1661local void ct_static_init()
1662{
1663 int n; /* iterates over tree elements */
1664 int bits; /* bit counter */
1665 int length; /* length value */
1666 int code; /* code value */
1667 int dist; /* distance index */
1668 ush bl_count[MAX_BITS+1];
1669 /* number of codes at each bit length for an optimal tree */
1670
1671 /* Initialize the mapping length (0..255) -> length code (0..28) */
1672 length = 0;
1673 for (code = 0; code < LENGTH_CODES-1; code++) {
1674 base_length[code] = length;
1675 for (n = 0; n < (1<<extra_lbits[code]); n++) {
1676 length_code[length++] = (uch)code;
1677 }
1678 }
1679 Assert (length == 256, "ct_static_init: length != 256");
1680 /* Note that the length 255 (match length 258) can be represented
1681 * in two different ways: code 284 + 5 bits or code 285, so we
1682 * overwrite length_code[255] to use the best encoding:
1683 */
1684 length_code[length-1] = (uch)code;
1685
1686 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1687 dist = 0;
1688 for (code = 0 ; code < 16; code++) {
1689 base_dist[code] = dist;
1690 for (n = 0; n < (1<<extra_dbits[code]); n++) {
1691 dist_code[dist++] = (uch)code;
1692 }
1693 }
1694 Assert (dist == 256, "ct_static_init: dist != 256");
1695 dist >>= 7; /* from now on, all distances are divided by 128 */
1696 for ( ; code < D_CODES; code++) {
1697 base_dist[code] = dist << 7;
1698 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
1699 dist_code[256 + dist++] = (uch)code;
1700 }
1701 }
1702 Assert (dist == 256, "ct_static_init: 256+dist != 512");
1703
1704 /* Construct the codes of the static literal tree */
1705 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
1706 n = 0;
1707 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
1708 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
1709 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
1710 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
1711 /* Codes 286 and 287 do not exist, but we must include them in the
1712 * tree construction to get a canonical Huffman tree (longest code
1713 * all ones)
1714 */
1715 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
1716
1717 /* The static distance tree is trivial: */
1718 for (n = 0; n < D_CODES; n++) {
1719 static_dtree[n].Len = 5;
1720 static_dtree[n].Code = bi_reverse(n, 5);
1721 }
1722}
1723
1724/* ===========================================================================
1725 * Initialize the tree data structures for a new zlib stream.
1726 */
1727local void ct_init(s)
1728 deflate_state *s;
1729{
1730 if (static_dtree[0].Len == 0) {
1731 ct_static_init(); /* To do: at compile time */
1732 }
1733
1734 s->compressed_len = 0L;
1735
1736 s->l_desc.dyn_tree = s->dyn_ltree;
1737 s->l_desc.stat_desc = &static_l_desc;
1738
1739 s->d_desc.dyn_tree = s->dyn_dtree;
1740 s->d_desc.stat_desc = &static_d_desc;
1741
1742 s->bl_desc.dyn_tree = s->bl_tree;
1743 s->bl_desc.stat_desc = &static_bl_desc;
1744
1745 s->bi_buf = 0;
1746 s->bi_valid = 0;
1747 s->last_eob_len = 8; /* enough lookahead for inflate */
1748#ifdef DEBUG_ZLIB
1749 s->bits_sent = 0L;
1750#endif
1751 s->blocks_in_packet = 0;
1752
1753 /* Initialize the first block of the first file: */
1754 init_block(s);
1755}
1756
1757/* ===========================================================================
1758 * Initialize a new block.
1759 */
1760local void init_block(s)
1761 deflate_state *s;
1762{
1763 int n; /* iterates over tree elements */
1764
1765 /* Initialize the trees. */
1766 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
1767 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
1768 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
1769
1770 s->dyn_ltree[END_BLOCK].Freq = 1;
1771 s->opt_len = s->static_len = 0L;
1772 s->last_lit = s->matches = 0;
1773}
1774
1775#define SMALLEST 1
1776/* Index within the heap array of least frequent node in the Huffman tree */
1777
1778
1779/* ===========================================================================
1780 * Remove the smallest element from the heap and recreate the heap with
1781 * one less element. Updates heap and heap_len.
1782 */
1783#define pqremove(s, tree, top) \
1784{\
1785 top = s->heap[SMALLEST]; \
1786 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
1787 pqdownheap(s, tree, SMALLEST); \
1788}
1789
1790/* ===========================================================================
1791 * Compares to subtrees, using the tree depth as tie breaker when
1792 * the subtrees have equal frequency. This minimizes the worst case length.
1793 */
1794#define smaller(tree, n, m, depth) \
1795 (tree[n].Freq < tree[m].Freq || \
1796 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1797
1798/* ===========================================================================
1799 * Restore the heap property by moving down the tree starting at node k,
1800 * exchanging a node with the smallest of its two sons if necessary, stopping
1801 * when the heap property is re-established (each father smaller than its
1802 * two sons).
1803 */
1804local void pqdownheap(s, tree, k)
1805 deflate_state *s;
1806 ct_data *tree; /* the tree to restore */
1807 int k; /* node to move down */
1808{
1809 int v = s->heap[k];
1810 int j = k << 1; /* left son of k */
1811 while (j <= s->heap_len) {
1812 /* Set j to the smallest of the two sons: */
1813 if (j < s->heap_len &&
1814 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
1815 j++;
1816 }
1817 /* Exit if v is smaller than both sons */
1818 if (smaller(tree, v, s->heap[j], s->depth)) break;
1819
1820 /* Exchange v with the smallest son */
1821 s->heap[k] = s->heap[j]; k = j;
1822
1823 /* And continue down the tree, setting j to the left son of k */
1824 j <<= 1;
1825 }
1826 s->heap[k] = v;
1827}
1828
1829/* ===========================================================================
1830 * Compute the optimal bit lengths for a tree and update the total bit length
1831 * for the current block.
1832 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1833 * above are the tree nodes sorted by increasing frequency.
1834 * OUT assertions: the field len is set to the optimal bit length, the
1835 * array bl_count contains the frequencies for each bit length.
1836 * The length opt_len is updated; static_len is also updated if stree is
1837 * not null.
1838 */
1839local void gen_bitlen(s, desc)
1840 deflate_state *s;
1841 tree_desc *desc; /* the tree descriptor */
1842{
1843 ct_data *tree = desc->dyn_tree;
1844 int max_code = desc->max_code;
1845 ct_data *stree = desc->stat_desc->static_tree;
1846 intf *extra = desc->stat_desc->extra_bits;
1847 int base = desc->stat_desc->extra_base;
1848 int max_length = desc->stat_desc->max_length;
1849 int h; /* heap index */
1850 int n, m; /* iterate over the tree elements */
1851 int bits; /* bit length */
1852 int xbits; /* extra bits */
1853 ush f; /* frequency */
1854 int overflow = 0; /* number of elements with bit length too large */
1855
1856 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
1857
1858 /* In a first pass, compute the optimal bit lengths (which may
1859 * overflow in the case of the bit length tree).
1860 */
1861 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
1862
1863 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
1864 n = s->heap[h];
1865 bits = tree[tree[n].Dad].Len + 1;
1866 if (bits > max_length) bits = max_length, overflow++;
1867 tree[n].Len = (ush)bits;
1868 /* We overwrite tree[n].Dad which is no longer needed */
1869
1870 if (n > max_code) continue; /* not a leaf node */
1871
1872 s->bl_count[bits]++;
1873 xbits = 0;
1874 if (n >= base) xbits = extra[n-base];
1875 f = tree[n].Freq;
1876 s->opt_len += (ulg)f * (bits + xbits);
1877 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
1878 }
1879 if (overflow == 0) return;
1880
1881 Trace((stderr,"\nbit length overflow\n"));
1882 /* This happens for example on obj2 and pic of the Calgary corpus */
1883
1884 /* Find the first bit length which could increase: */
1885 do {
1886 bits = max_length-1;
1887 while (s->bl_count[bits] == 0) bits--;
1888 s->bl_count[bits]--; /* move one leaf down the tree */
1889 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
1890 s->bl_count[max_length]--;
1891 /* The brother of the overflow item also moves one step up,
1892 * but this does not affect bl_count[max_length]
1893 */
1894 overflow -= 2;
1895 } while (overflow > 0);
1896
1897 /* Now recompute all bit lengths, scanning in increasing frequency.
1898 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1899 * lengths instead of fixing only the wrong ones. This idea is taken
1900 * from 'ar' written by Haruhiko Okumura.)
1901 */
1902 for (bits = max_length; bits != 0; bits--) {
1903 n = s->bl_count[bits];
1904 while (n != 0) {
1905 m = s->heap[--h];
1906 if (m > max_code) continue;
1907 if (tree[m].Len != (unsigned) bits) {
1908 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
1909 s->opt_len += ((long)bits - (long)tree[m].Len)
1910 *(long)tree[m].Freq;
1911 tree[m].Len = (ush)bits;
1912 }
1913 n--;
1914 }
1915 }
1916}
1917
1918/* ===========================================================================
1919 * Generate the codes for a given tree and bit counts (which need not be
1920 * optimal).
1921 * IN assertion: the array bl_count contains the bit length statistics for
1922 * the given tree and the field len is set for all tree elements.
1923 * OUT assertion: the field code is set for all tree elements of non
1924 * zero code length.
1925 */
1926local void gen_codes (tree, max_code, bl_count)
1927 ct_data *tree; /* the tree to decorate */
1928 int max_code; /* largest code with non zero frequency */
1929 ushf *bl_count; /* number of codes at each bit length */
1930{
1931 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
1932 ush code = 0; /* running code value */
1933 int bits; /* bit index */
1934 int n; /* code index */
1935
1936 /* The distribution counts are first used to generate the code values
1937 * without bit reversal.
1938 */
1939 for (bits = 1; bits <= MAX_BITS; bits++) {
1940 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
1941 }
1942 /* Check that the bit counts in bl_count are consistent. The last code
1943 * must be all ones.
1944 */
1945 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
1946 "inconsistent bit counts");
1947 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
1948
1949 for (n = 0; n <= max_code; n++) {
1950 int len = tree[n].Len;
1951 if (len == 0) continue;
1952 /* Now reverse the bits */
1953 tree[n].Code = bi_reverse(next_code[len]++, len);
1954
1955 Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
1956 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
1957 }
1958}
1959
1960/* ===========================================================================
1961 * Construct one Huffman tree and assigns the code bit strings and lengths.
1962 * Update the total bit length for the current block.
1963 * IN assertion: the field freq is set for all tree elements.
1964 * OUT assertions: the fields len and code are set to the optimal bit length
1965 * and corresponding code. The length opt_len is updated; static_len is
1966 * also updated if stree is not null. The field max_code is set.
1967 */
1968local void build_tree(s, desc)
1969 deflate_state *s;
1970 tree_desc *desc; /* the tree descriptor */
1971{
1972 ct_data *tree = desc->dyn_tree;
1973 ct_data *stree = desc->stat_desc->static_tree;
1974 int elems = desc->stat_desc->elems;
1975 int n, m; /* iterate over heap elements */
1976 int max_code = -1; /* largest code with non zero frequency */
1977 int node; /* new node being created */
1978
1979 /* Construct the initial heap, with least frequent element in
1980 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1981 * heap[0] is not used.
1982 */
1983 s->heap_len = 0, s->heap_max = HEAP_SIZE;
1984
1985 for (n = 0; n < elems; n++) {
1986 if (tree[n].Freq != 0) {
1987 s->heap[++(s->heap_len)] = max_code = n;
1988 s->depth[n] = 0;
1989 } else {
1990 tree[n].Len = 0;
1991 }
1992 }
1993
1994 /* The pkzip format requires that at least one distance code exists,
1995 * and that at least one bit should be sent even if there is only one
1996 * possible code. So to avoid special checks later on we force at least
1997 * two codes of non zero frequency.
1998 */
1999 while (s->heap_len < 2) {
2000 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2001 tree[node].Freq = 1;
2002 s->depth[node] = 0;
2003 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2004 /* node is 0 or 1 so it does not have extra bits */
2005 }
2006 desc->max_code = max_code;
2007
2008 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2009 * establish sub-heaps of increasing lengths:
2010 */
2011 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2012
2013 /* Construct the Huffman tree by repeatedly combining the least two
2014 * frequent nodes.
2015 */
2016 node = elems; /* next internal node of the tree */
2017 do {
2018 pqremove(s, tree, n); /* n = node of least frequency */
2019 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2020
2021 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2022 s->heap[--(s->heap_max)] = m;
2023
2024 /* Create a new node father of n and m */
2025 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2026 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2027 tree[n].Dad = tree[m].Dad = (ush)node;
2028#ifdef DUMP_BL_TREE
2029 if (tree == s->bl_tree) {
2030 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2031 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2032 }
2033#endif
2034 /* and insert the new node in the heap */
2035 s->heap[SMALLEST] = node++;
2036 pqdownheap(s, tree, SMALLEST);
2037
2038 } while (s->heap_len >= 2);
2039
2040 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2041
2042 /* At this point, the fields freq and dad are set. We can now
2043 * generate the bit lengths.
2044 */
2045 gen_bitlen(s, (tree_desc *)desc);
2046
2047 /* The field len is now set, we can generate the bit codes */
2048 gen_codes ((ct_data *)tree, max_code, s->bl_count);
2049}
2050
2051/* ===========================================================================
2052 * Scan a literal or distance tree to determine the frequencies of the codes
2053 * in the bit length tree.
2054 */
2055local void scan_tree (s, tree, max_code)
2056 deflate_state *s;
2057 ct_data *tree; /* the tree to be scanned */
2058 int max_code; /* and its largest code of non zero frequency */
2059{
2060 int n; /* iterates over all tree elements */
2061 int prevlen = -1; /* last emitted length */
2062 int curlen; /* length of current code */
2063 int nextlen = tree[0].Len; /* length of next code */
2064 int count = 0; /* repeat count of the current code */
2065 int max_count = 7; /* max repeat count */
2066 int min_count = 4; /* min repeat count */
2067
2068 if (nextlen == 0) max_count = 138, min_count = 3;
2069 tree[max_code+1].Len = (ush)0xffff; /* guard */
2070
2071 for (n = 0; n <= max_code; n++) {
2072 curlen = nextlen; nextlen = tree[n+1].Len;
2073 if (++count < max_count && curlen == nextlen) {
2074 continue;
2075 } else if (count < min_count) {
2076 s->bl_tree[curlen].Freq += count;
2077 } else if (curlen != 0) {
2078 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2079 s->bl_tree[REP_3_6].Freq++;
2080 } else if (count <= 10) {
2081 s->bl_tree[REPZ_3_10].Freq++;
2082 } else {
2083 s->bl_tree[REPZ_11_138].Freq++;
2084 }
2085 count = 0; prevlen = curlen;
2086 if (nextlen == 0) {
2087 max_count = 138, min_count = 3;
2088 } else if (curlen == nextlen) {
2089 max_count = 6, min_count = 3;
2090 } else {
2091 max_count = 7, min_count = 4;
2092 }
2093 }
2094}
2095
2096/* ===========================================================================
2097 * Send a literal or distance tree in compressed form, using the codes in
2098 * bl_tree.
2099 */
2100local void send_tree (s, tree, max_code)
2101 deflate_state *s;
2102 ct_data *tree; /* the tree to be scanned */
2103 int max_code; /* and its largest code of non zero frequency */
2104{
2105 int n; /* iterates over all tree elements */
2106 int prevlen = -1; /* last emitted length */
2107 int curlen; /* length of current code */
2108 int nextlen = tree[0].Len; /* length of next code */
2109 int count = 0; /* repeat count of the current code */
2110 int max_count = 7; /* max repeat count */
2111 int min_count = 4; /* min repeat count */
2112
2113 /* tree[max_code+1].Len = -1; */ /* guard already set */
2114 if (nextlen == 0) max_count = 138, min_count = 3;
2115
2116 for (n = 0; n <= max_code; n++) {
2117 curlen = nextlen; nextlen = tree[n+1].Len;
2118 if (++count < max_count && curlen == nextlen) {
2119 continue;
2120 } else if (count < min_count) {
2121 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2122
2123 } else if (curlen != 0) {
2124 if (curlen != prevlen) {
2125 send_code(s, curlen, s->bl_tree); count--;
2126 }
2127 Assert(count >= 3 && count <= 6, " 3_6?");
2128 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2129
2130 } else if (count <= 10) {
2131 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2132
2133 } else {
2134 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2135 }
2136 count = 0; prevlen = curlen;
2137 if (nextlen == 0) {
2138 max_count = 138, min_count = 3;
2139 } else if (curlen == nextlen) {
2140 max_count = 6, min_count = 3;
2141 } else {
2142 max_count = 7, min_count = 4;
2143 }
2144 }
2145}
2146
2147/* ===========================================================================
2148 * Construct the Huffman tree for the bit lengths and return the index in
2149 * bl_order of the last bit length code to send.
2150 */
2151local int build_bl_tree(s)
2152 deflate_state *s;
2153{
2154 int max_blindex; /* index of last bit length code of non zero freq */
2155
2156 /* Determine the bit length frequencies for literal and distance trees */
2157 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2158 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2159
2160 /* Build the bit length tree: */
2161 build_tree(s, (tree_desc *)(&(s->bl_desc)));
2162 /* opt_len now includes the length of the tree representations, except
2163 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2164 */
2165
2166 /* Determine the number of bit length codes to send. The pkzip format
2167 * requires that at least 4 bit length codes be sent. (appnote.txt says
2168 * 3 but the actual value used is 4.)
2169 */
2170 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2171 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2172 }
2173 /* Update opt_len to include the bit length tree and counts */
2174 s->opt_len += 3*(max_blindex+1) + 5+5+4;
2175 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2176 s->opt_len, s->static_len));
2177
2178 return max_blindex;
2179}
2180
2181/* ===========================================================================
2182 * Send the header for a block using dynamic Huffman trees: the counts, the
2183 * lengths of the bit length codes, the literal tree and the distance tree.
2184 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2185 */
2186local void send_all_trees(s, lcodes, dcodes, blcodes)
2187 deflate_state *s;
2188 int lcodes, dcodes, blcodes; /* number of codes for each tree */
2189{
2190 int rank; /* index in bl_order */
2191
2192 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2193 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2194 "too many codes");
2195 Tracev((stderr, "\nbl counts: "));
2196 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2197 send_bits(s, dcodes-1, 5);
2198 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2199 for (rank = 0; rank < blcodes; rank++) {
2200 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2201 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2202 }
2203 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2204
2205 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2206 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2207
2208 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2209 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2210}
2211
2212/* ===========================================================================
2213 * Send a stored block
2214 */
2215local void ct_stored_block(s, buf, stored_len, eof)
2216 deflate_state *s;
2217 charf *buf; /* input block */
2218 ulg stored_len; /* length of input block */
2219 int eof; /* true if this is the last block for a file */
2220{
2221 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2222 s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
2223 s->compressed_len += (stored_len + 4) << 3;
2224
2225 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2226}
2227
2228/* Send just the `stored block' type code without any length bytes or data.
2229 */
2230local void ct_stored_type_only(s)
2231 deflate_state *s;
2232{
2233 send_bits(s, (STORED_BLOCK << 1), 3);
2234 bi_windup(s);
2235 s->compressed_len = (s->compressed_len + 3) & ~7L;
2236}
2237
2238
2239/* ===========================================================================
2240 * Send one empty static block to give enough lookahead for inflate.
2241 * This takes 10 bits, of which 7 may remain in the bit buffer.
2242 * The current inflate code requires 9 bits of lookahead. If the EOB
2243 * code for the previous block was coded on 5 bits or less, inflate
2244 * may have only 5+3 bits of lookahead to decode this EOB.
2245 * (There are no problems if the previous block is stored or fixed.)
2246 */
2247local void ct_align(s)
2248 deflate_state *s;
2249{
2250 send_bits(s, STATIC_TREES<<1, 3);
2251 send_code(s, END_BLOCK, static_ltree);
2252 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2253 bi_flush(s);
2254 /* Of the 10 bits for the empty block, we have already sent
2255 * (10 - bi_valid) bits. The lookahead for the EOB of the previous
2256 * block was thus its length plus what we have just sent.
2257 */
2258 if (s->last_eob_len + 10 - s->bi_valid < 9) {
2259 send_bits(s, STATIC_TREES<<1, 3);
2260 send_code(s, END_BLOCK, static_ltree);
2261 s->compressed_len += 10L;
2262 bi_flush(s);
2263 }
2264 s->last_eob_len = 7;
2265}
2266
2267/* ===========================================================================
2268 * Determine the best encoding for the current block: dynamic trees, static
2269 * trees or store, and output the encoded block to the zip file. This function
2270 * returns the total compressed length for the file so far.
2271 */
2272local ulg ct_flush_block(s, buf, stored_len, flush)
2273 deflate_state *s;
2274 charf *buf; /* input block, or NULL if too old */
2275 ulg stored_len; /* length of input block */
2276 int flush; /* Z_FINISH if this is the last block for a file */
2277{
2278 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2279 int max_blindex; /* index of last bit length code of non zero freq */
2280 int eof = flush == Z_FINISH;
2281
2282 ++s->blocks_in_packet;
2283
2284 /* Check if the file is ascii or binary */
2285 if (s->data_type == UNKNOWN) set_data_type(s);
2286
2287 /* Construct the literal and distance trees */
2288 build_tree(s, (tree_desc *)(&(s->l_desc)));
2289 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2290 s->static_len));
2291
2292 build_tree(s, (tree_desc *)(&(s->d_desc)));
2293 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2294 s->static_len));
2295 /* At this point, opt_len and static_len are the total bit lengths of
2296 * the compressed block data, excluding the tree representations.
2297 */
2298
2299 /* Build the bit length tree for the above two trees, and get the index
2300 * in bl_order of the last bit length code to send.
2301 */
2302 max_blindex = build_bl_tree(s);
2303
2304 /* Determine the best encoding. Compute first the block length in bytes */
2305 opt_lenb = (s->opt_len+3+7)>>3;
2306 static_lenb = (s->static_len+3+7)>>3;
2307
2308 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2309 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2310 s->last_lit));
2311
2312 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2313
2314 /* If compression failed and this is the first and last block,
2315 * and if the .zip file can be seeked (to rewrite the local header),
2316 * the whole file is transformed into a stored file:
2317 */
2318#ifdef STORED_FILE_OK
2319# ifdef FORCE_STORED_FILE
2320 if (eof && compressed_len == 0L) /* force stored file */
2321# else
2322 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable())
2323# endif
2324 {
2325 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2326 if (buf == (charf*)0) error ("block vanished");
2327
2328 copy_block(buf, (unsigned)stored_len, 0); /* without header */
2329 s->compressed_len = stored_len << 3;
2330 s->method = STORED;
2331 } else
2332#endif /* STORED_FILE_OK */
2333
861c20b4
PM
2334#ifdef FORCE_STORED
2335 if (buf != (char*)0) /* force stored block */
2336#else
2337 if (stored_len+4 <= opt_lenb && buf != (char*)0)
2338 /* 4: two words for the lengths */
2339#endif
2340 {
2341 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2342 * Otherwise we can't have processed more than WSIZE input bytes since
2343 * the last block flush, because compression would have been
2344 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2345 * transform a block into a stored block.
2346 */
2347 ct_stored_block(s, buf, stored_len, eof);
2348 } else
2349
2350#ifdef FORCE_STATIC
2351 if (static_lenb >= 0) /* force static trees */
2352#else
2353 if (static_lenb == opt_lenb)
2354#endif
2355 {
2356 send_bits(s, (STATIC_TREES<<1)+eof, 3);
2357 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2358 s->compressed_len += 3 + s->static_len;
2359 } else {
2360 send_bits(s, (DYN_TREES<<1)+eof, 3);
2361 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2362 max_blindex+1);
2363 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2364 s->compressed_len += 3 + s->opt_len;
2365 }
2366 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2367 init_block(s);
2368
2369 if (eof) {
2370 bi_windup(s);
2371 s->compressed_len += 7; /* align on byte boundary */
2372 }
2373 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2374 s->compressed_len-7*eof));
2375
2376 return s->compressed_len >> 3;
2377}
2378
2379/* ===========================================================================
2380 * Save the match info and tally the frequency counts. Return true if
2381 * the current block must be flushed.
2382 */
2383local int ct_tally (s, dist, lc)
2384 deflate_state *s;
2385 int dist; /* distance of matched string */
2386 int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2387{
2388 s->d_buf[s->last_lit] = (ush)dist;
2389 s->l_buf[s->last_lit++] = (uch)lc;
2390 if (dist == 0) {
2391 /* lc is the unmatched char */
2392 s->dyn_ltree[lc].Freq++;
2393 } else {
2394 s->matches++;
2395 /* Here, lc is the match length - MIN_MATCH */
2396 dist--; /* dist = match distance - 1 */
2397 Assert((ush)dist < (ush)MAX_DIST(s) &&
2398 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2399 (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
2400
2401 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2402 s->dyn_dtree[d_code(dist)].Freq++;
2403 }
2404
2405 /* Try to guess if it is profitable to stop the current block here */
2406 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2407 /* Compute an upper bound for the compressed length */
2408 ulg out_length = (ulg)s->last_lit*8L;
2409 ulg in_length = (ulg)s->strstart - s->block_start;
2410 int dcode;
2411 for (dcode = 0; dcode < D_CODES; dcode++) {
2412 out_length += (ulg)s->dyn_dtree[dcode].Freq *
2413 (5L+extra_dbits[dcode]);
2414 }
2415 out_length >>= 3;
2416 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2417 s->last_lit, in_length, out_length,
2418 100L - out_length*100L/in_length));
2419 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2420 }
2421 return (s->last_lit == s->lit_bufsize-1);
2422 /* We avoid equality with lit_bufsize because of wraparound at 64K
2423 * on 16 bit machines and because stored blocks are restricted to
2424 * 64K-1 bytes.
2425 */
2426}
2427
2428/* ===========================================================================
2429 * Send the block data compressed using the given Huffman trees
2430 */
2431local void compress_block(s, ltree, dtree)
2432 deflate_state *s;
2433 ct_data *ltree; /* literal tree */
2434 ct_data *dtree; /* distance tree */
2435{
2436 unsigned dist; /* distance of matched string */
2437 int lc; /* match length or unmatched char (if dist == 0) */
2438 unsigned lx = 0; /* running index in l_buf */
2439 unsigned code; /* the code to send */
2440 int extra; /* number of extra bits to send */
2441
2442 if (s->last_lit != 0) do {
2443 dist = s->d_buf[lx];
2444 lc = s->l_buf[lx++];
2445 if (dist == 0) {
2446 send_code(s, lc, ltree); /* send a literal byte */
2447 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2448 } else {
2449 /* Here, lc is the match length - MIN_MATCH */
2450 code = length_code[lc];
2451 send_code(s, code+LITERALS+1, ltree); /* send the length code */
2452 extra = extra_lbits[code];
2453 if (extra != 0) {
2454 lc -= base_length[code];
2455 send_bits(s, lc, extra); /* send the extra length bits */
2456 }
2457 dist--; /* dist is now the match distance - 1 */
2458 code = d_code(dist);
2459 Assert (code < D_CODES, "bad d_code");
2460
2461 send_code(s, code, dtree); /* send the distance code */
2462 extra = extra_dbits[code];
2463 if (extra != 0) {
2464 dist -= base_dist[code];
2465 send_bits(s, dist, extra); /* send the extra distance bits */
2466 }
2467 } /* literal or match pair ? */
2468
2469 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2470 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2471
2472 } while (lx < s->last_lit);
2473
2474 send_code(s, END_BLOCK, ltree);
2475 s->last_eob_len = ltree[END_BLOCK].Len;
2476}
2477
2478/* ===========================================================================
2479 * Set the data type to ASCII or BINARY, using a crude approximation:
2480 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2481 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2482 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2483 */
2484local void set_data_type(s)
2485 deflate_state *s;
2486{
2487 int n = 0;
2488 unsigned ascii_freq = 0;
2489 unsigned bin_freq = 0;
2490 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2491 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2492 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2493 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
2494}
2495
2496/* ===========================================================================
2497 * Reverse the first len bits of a code, using straightforward code (a faster
2498 * method would use a table)
2499 * IN assertion: 1 <= len <= 15
2500 */
2501local unsigned bi_reverse(code, len)
2502 unsigned code; /* the value to invert */
2503 int len; /* its bit length */
2504{
2505 register unsigned res = 0;
2506 do {
2507 res |= code & 1;
2508 code >>= 1, res <<= 1;
2509 } while (--len > 0);
2510 return res >> 1;
2511}
2512
2513/* ===========================================================================
2514 * Flush the bit buffer, keeping at most 7 bits in it.
2515 */
2516local void bi_flush(s)
2517 deflate_state *s;
2518{
2519 if (s->bi_valid == 16) {
2520 put_short(s, s->bi_buf);
2521 s->bi_buf = 0;
2522 s->bi_valid = 0;
2523 } else if (s->bi_valid >= 8) {
2524 put_byte(s, (Byte)s->bi_buf);
2525 s->bi_buf >>= 8;
2526 s->bi_valid -= 8;
2527 }
2528}
2529
2530/* ===========================================================================
2531 * Flush the bit buffer and align the output on a byte boundary
2532 */
2533local void bi_windup(s)
2534 deflate_state *s;
2535{
2536 if (s->bi_valid > 8) {
2537 put_short(s, s->bi_buf);
2538 } else if (s->bi_valid > 0) {
2539 put_byte(s, (Byte)s->bi_buf);
2540 }
2541 s->bi_buf = 0;
2542 s->bi_valid = 0;
2543#ifdef DEBUG_ZLIB
2544 s->bits_sent = (s->bits_sent+7) & ~7;
2545#endif
2546}
2547
2548/* ===========================================================================
2549 * Copy a stored block, storing first the length and its
2550 * one's complement if requested.
2551 */
2552local void copy_block(s, buf, len, header)
2553 deflate_state *s;
2554 charf *buf; /* the input data */
2555 unsigned len; /* its length */
2556 int header; /* true if block header must be written */
2557{
2558 bi_windup(s); /* align on byte boundary */
2559 s->last_eob_len = 8; /* enough lookahead for inflate */
2560
2561 if (header) {
2562 put_short(s, (ush)len);
2563 put_short(s, (ush)~len);
2564#ifdef DEBUG_ZLIB
2565 s->bits_sent += 2*16;
2566#endif
2567 }
2568#ifdef DEBUG_ZLIB
2569 s->bits_sent += (ulg)len<<3;
2570#endif
2571 while (len--) {
2572 put_byte(s, *buf++);
2573 }
2574}
2575
2576
2577/*+++++*/
2578/* infblock.h -- header to use infblock.c
2579 * Copyright (C) 1995 Mark Adler
2580 * For conditions of distribution and use, see copyright notice in zlib.h
2581 */
2582
2583/* WARNING: this file should *not* be used by applications. It is
2584 part of the implementation of the compression library and is
2585 subject to change. Applications should only use zlib.h.
2586 */
2587
2588struct inflate_blocks_state;
2589typedef struct inflate_blocks_state FAR inflate_blocks_statef;
2590
2591local inflate_blocks_statef * inflate_blocks_new OF((
2592 z_stream *z,
2593 check_func c, /* check function */
2594 uInt w)); /* window size */
2595
2596local int inflate_blocks OF((
2597 inflate_blocks_statef *,
2598 z_stream *,
2599 int)); /* initial return code */
2600
2601local void inflate_blocks_reset OF((
2602 inflate_blocks_statef *,
2603 z_stream *,
2604 uLongf *)); /* check value on output */
2605
2606local int inflate_blocks_free OF((
2607 inflate_blocks_statef *,
2608 z_stream *,
2609 uLongf *)); /* check value on output */
2610
2611local int inflate_addhistory OF((
2612 inflate_blocks_statef *,
2613 z_stream *));
2614
2615local int inflate_packet_flush OF((
2616 inflate_blocks_statef *));
2617
2618/*+++++*/
2619/* inftrees.h -- header to use inftrees.c
2620 * Copyright (C) 1995 Mark Adler
2621 * For conditions of distribution and use, see copyright notice in zlib.h
2622 */
2623
2624/* WARNING: this file should *not* be used by applications. It is
2625 part of the implementation of the compression library and is
2626 subject to change. Applications should only use zlib.h.
2627 */
2628
2629/* Huffman code lookup table entry--this entry is four bytes for machines
2630 that have 16-bit pointers (e.g. PC's in the small or medium model). */
2631
2632typedef struct inflate_huft_s FAR inflate_huft;
2633
2634struct inflate_huft_s {
2635 union {
2636 struct {
2637 Byte Exop; /* number of extra bits or operation */
2638 Byte Bits; /* number of bits in this code or subcode */
2639 } what;
2640 uInt Nalloc; /* number of these allocated here */
2641 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
2642 } word; /* 16-bit, 8 bytes for 32-bit machines) */
2643 union {
2644 uInt Base; /* literal, length base, or distance base */
2645 inflate_huft *Next; /* pointer to next level of table */
2646 } more;
2647};
2648
2649#ifdef DEBUG_ZLIB
2650 local uInt inflate_hufts;
2651#endif
2652
2653local int inflate_trees_bits OF((
2654 uIntf *, /* 19 code lengths */
2655 uIntf *, /* bits tree desired/actual depth */
2656 inflate_huft * FAR *, /* bits tree result */
2657 z_stream *)); /* for zalloc, zfree functions */
2658
2659local int inflate_trees_dynamic OF((
2660 uInt, /* number of literal/length codes */
2661 uInt, /* number of distance codes */
2662 uIntf *, /* that many (total) code lengths */
2663 uIntf *, /* literal desired/actual bit depth */
2664 uIntf *, /* distance desired/actual bit depth */
2665 inflate_huft * FAR *, /* literal/length tree result */
2666 inflate_huft * FAR *, /* distance tree result */
2667 z_stream *)); /* for zalloc, zfree functions */
2668
2669local int inflate_trees_fixed OF((
2670 uIntf *, /* literal desired/actual bit depth */
2671 uIntf *, /* distance desired/actual bit depth */
2672 inflate_huft * FAR *, /* literal/length tree result */
2673 inflate_huft * FAR *)); /* distance tree result */
2674
2675local int inflate_trees_free OF((
2676 inflate_huft *, /* tables to free */
2677 z_stream *)); /* for zfree function */
2678
2679
2680/*+++++*/
2681/* infcodes.h -- header to use infcodes.c
2682 * Copyright (C) 1995 Mark Adler
2683 * For conditions of distribution and use, see copyright notice in zlib.h
2684 */
2685
2686/* WARNING: this file should *not* be used by applications. It is
2687 part of the implementation of the compression library and is
2688 subject to change. Applications should only use zlib.h.
2689 */
2690
2691struct inflate_codes_state;
2692typedef struct inflate_codes_state FAR inflate_codes_statef;
2693
2694local inflate_codes_statef *inflate_codes_new OF((
2695 uInt, uInt,
2696 inflate_huft *, inflate_huft *,
2697 z_stream *));
2698
2699local int inflate_codes OF((
2700 inflate_blocks_statef *,
2701 z_stream *,
2702 int));
2703
2704local void inflate_codes_free OF((
2705 inflate_codes_statef *,
2706 z_stream *));
2707
2708
2709/*+++++*/
2710/* inflate.c -- zlib interface to inflate modules
2711 * Copyright (C) 1995 Mark Adler
2712 * For conditions of distribution and use, see copyright notice in zlib.h
2713 */
2714
2715/* inflate private state */
2716struct internal_state {
2717
2718 /* mode */
2719 enum {
2720 METHOD, /* waiting for method byte */
2721 FLAG, /* waiting for flag byte */
2722 BLOCKS, /* decompressing blocks */
2723 CHECK4, /* four check bytes to go */
2724 CHECK3, /* three check bytes to go */
2725 CHECK2, /* two check bytes to go */
2726 CHECK1, /* one check byte to go */
2727 DONE, /* finished check, done */
a3418f2e 2728 ZBAD} /* got an error--stay here */
861c20b4
PM
2729 mode; /* current inflate mode */
2730
2731 /* mode dependent information */
2732 union {
2733 uInt method; /* if FLAGS, method byte */
2734 struct {
2735 uLong was; /* computed check value */
2736 uLong need; /* stream check value */
2737 } check; /* if CHECK, check values to compare */
a3418f2e 2738 uInt marker; /* if ZBAD, inflateSync's marker bytes count */
861c20b4
PM
2739 } sub; /* submode */
2740
2741 /* mode independent information */
2742 int nowrap; /* flag for no wrapper */
2743 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
2744 inflate_blocks_statef
2745 *blocks; /* current inflate_blocks state */
2746
2747};
2748
2749
2750int inflateReset(z)
2751z_stream *z;
2752{
2753 uLong c;
2754
2755 if (z == Z_NULL || z->state == Z_NULL)
2756 return Z_STREAM_ERROR;
2757 z->total_in = z->total_out = 0;
2758 z->msg = Z_NULL;
2759 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
2760 inflate_blocks_reset(z->state->blocks, z, &c);
2761 Trace((stderr, "inflate: reset\n"));
2762 return Z_OK;
2763}
2764
2765
2766int inflateEnd(z)
2767z_stream *z;
2768{
2769 uLong c;
2770
2771 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
2772 return Z_STREAM_ERROR;
2773 if (z->state->blocks != Z_NULL)
2774 inflate_blocks_free(z->state->blocks, z, &c);
2775 ZFREE(z, z->state, sizeof(struct internal_state));
2776 z->state = Z_NULL;
2777 Trace((stderr, "inflate: end\n"));
2778 return Z_OK;
2779}
2780
2781
2782int inflateInit2(z, w)
2783z_stream *z;
2784int w;
2785{
2786 /* initialize state */
2787 if (z == Z_NULL)
2788 return Z_STREAM_ERROR;
2789/* if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */
2790/* if (z->zfree == Z_NULL) z->zfree = zcfree; */
2791 if ((z->state = (struct internal_state FAR *)
2792 ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
2793 return Z_MEM_ERROR;
2794 z->state->blocks = Z_NULL;
2795
2796 /* handle undocumented nowrap option (no zlib header or check) */
2797 z->state->nowrap = 0;
2798 if (w < 0)
2799 {
2800 w = - w;
2801 z->state->nowrap = 1;
2802 }
2803
2804 /* set window size */
2805 if (w < 8 || w > 15)
2806 {
2807 inflateEnd(z);
2808 return Z_STREAM_ERROR;
2809 }
2810 z->state->wbits = (uInt)w;
2811
2812 /* create inflate_blocks state */
2813 if ((z->state->blocks =
2814 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w))
2815 == Z_NULL)
2816 {
2817 inflateEnd(z);
2818 return Z_MEM_ERROR;
2819 }
2820 Trace((stderr, "inflate: allocated\n"));
2821
2822 /* reset state */
2823 inflateReset(z);
2824 return Z_OK;
2825}
2826
2827
2828int inflateInit(z)
2829z_stream *z;
2830{
2831 return inflateInit2(z, DEF_WBITS);
2832}
2833
2834
2835#define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
2836#define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
2837
2838int inflate(z, f)
2839z_stream *z;
2840int f;
2841{
2842 int r;
2843 uInt b;
2844
2845 if (z == Z_NULL || z->next_in == Z_NULL)
2846 return Z_STREAM_ERROR;
2847 r = Z_BUF_ERROR;
2848 while (1) switch (z->state->mode)
2849 {
2850 case METHOD:
2851 NEEDBYTE
2852 if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED)
2853 {
a3418f2e 2854 z->state->mode = ZBAD;
861c20b4
PM
2855 z->msg = "unknown compression method";
2856 z->state->sub.marker = 5; /* can't try inflateSync */
2857 break;
2858 }
2859 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
2860 {
a3418f2e 2861 z->state->mode = ZBAD;
861c20b4
PM
2862 z->msg = "invalid window size";
2863 z->state->sub.marker = 5; /* can't try inflateSync */
2864 break;
2865 }
2866 z->state->mode = FLAG;
2867 case FLAG:
2868 NEEDBYTE
2869 if ((b = NEXTBYTE) & 0x20)
2870 {
a3418f2e 2871 z->state->mode = ZBAD;
861c20b4
PM
2872 z->msg = "invalid reserved bit";
2873 z->state->sub.marker = 5; /* can't try inflateSync */
2874 break;
2875 }
2876 if (((z->state->sub.method << 8) + b) % 31)
2877 {
a3418f2e 2878 z->state->mode = ZBAD;
861c20b4
PM
2879 z->msg = "incorrect header check";
2880 z->state->sub.marker = 5; /* can't try inflateSync */
2881 break;
2882 }
2883 Trace((stderr, "inflate: zlib header ok\n"));
2884 z->state->mode = BLOCKS;
2885 case BLOCKS:
2886 r = inflate_blocks(z->state->blocks, z, r);
2887 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
2888 r = inflate_packet_flush(z->state->blocks);
2889 if (r == Z_DATA_ERROR)
2890 {
a3418f2e 2891 z->state->mode = ZBAD;
861c20b4
PM
2892 z->state->sub.marker = 0; /* can try inflateSync */
2893 break;
2894 }
2895 if (r != Z_STREAM_END)
2896 return r;
2897 r = Z_OK;
2898 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
2899 if (z->state->nowrap)
2900 {
2901 z->state->mode = DONE;
2902 break;
2903 }
2904 z->state->mode = CHECK4;
2905 case CHECK4:
2906 NEEDBYTE
2907 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
2908 z->state->mode = CHECK3;
2909 case CHECK3:
2910 NEEDBYTE
2911 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
2912 z->state->mode = CHECK2;
2913 case CHECK2:
2914 NEEDBYTE
2915 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
2916 z->state->mode = CHECK1;
2917 case CHECK1:
2918 NEEDBYTE
2919 z->state->sub.check.need += (uLong)NEXTBYTE;
2920
2921 if (z->state->sub.check.was != z->state->sub.check.need)
2922 {
a3418f2e 2923 z->state->mode = ZBAD;
861c20b4
PM
2924 z->msg = "incorrect data check";
2925 z->state->sub.marker = 5; /* can't try inflateSync */
2926 break;
2927 }
2928 Trace((stderr, "inflate: zlib check ok\n"));
2929 z->state->mode = DONE;
2930 case DONE:
2931 return Z_STREAM_END;
a3418f2e 2932 case ZBAD:
861c20b4
PM
2933 return Z_DATA_ERROR;
2934 default:
2935 return Z_STREAM_ERROR;
2936 }
2937
2938 empty:
2939 if (f != Z_PACKET_FLUSH)
2940 return r;
a3418f2e 2941 z->state->mode = ZBAD;
861c20b4
PM
2942 z->state->sub.marker = 0; /* can try inflateSync */
2943 return Z_DATA_ERROR;
2944}
2945
2946/*
2947 * This subroutine adds the data at next_in/avail_in to the output history
2948 * without performing any output. The output buffer must be "caught up";
2949 * i.e. no pending output (hence s->read equals s->write), and the state must
2950 * be BLOCKS (i.e. we should be willing to see the start of a series of
2951 * BLOCKS). On exit, the output will also be caught up, and the checksum
2952 * will have been updated if need be.
2953 */
2954
2955int inflateIncomp(z)
2956z_stream *z;
2957{
2958 if (z->state->mode != BLOCKS)
2959 return Z_DATA_ERROR;
2960 return inflate_addhistory(z->state->blocks, z);
2961}
2962
2963
2964int inflateSync(z)
2965z_stream *z;
2966{
2967 uInt n; /* number of bytes to look at */
2968 Bytef *p; /* pointer to bytes */
2969 uInt m; /* number of marker bytes found in a row */
2970 uLong r, w; /* temporaries to save total_in and total_out */
2971
2972 /* set up */
2973 if (z == Z_NULL || z->state == Z_NULL)
2974 return Z_STREAM_ERROR;
a3418f2e 2975 if (z->state->mode != ZBAD)
861c20b4 2976 {
a3418f2e 2977 z->state->mode = ZBAD;
861c20b4
PM
2978 z->state->sub.marker = 0;
2979 }
2980 if ((n = z->avail_in) == 0)
2981 return Z_BUF_ERROR;
2982 p = z->next_in;
2983 m = z->state->sub.marker;
2984
2985 /* search */
2986 while (n && m < 4)
2987 {
2988 if (*p == (Byte)(m < 2 ? 0 : 0xff))
2989 m++;
2990 else if (*p)
2991 m = 0;
2992 else
2993 m = 4 - m;
2994 p++, n--;
2995 }
2996
2997 /* restore */
2998 z->total_in += p - z->next_in;
2999 z->next_in = p;
3000 z->avail_in = n;
3001 z->state->sub.marker = m;
3002
3003 /* return no joy or set up to restart on a new block */
3004 if (m != 4)
3005 return Z_DATA_ERROR;
3006 r = z->total_in; w = z->total_out;
3007 inflateReset(z);
3008 z->total_in = r; z->total_out = w;
3009 z->state->mode = BLOCKS;
3010 return Z_OK;
3011}
3012
3013#undef NEEDBYTE
3014#undef NEXTBYTE
3015
3016/*+++++*/
3017/* infutil.h -- types and macros common to blocks and codes
3018 * Copyright (C) 1995 Mark Adler
3019 * For conditions of distribution and use, see copyright notice in zlib.h
3020 */
3021
3022/* WARNING: this file should *not* be used by applications. It is
3023 part of the implementation of the compression library and is
3024 subject to change. Applications should only use zlib.h.
3025 */
3026
3027/* inflate blocks semi-private state */
3028struct inflate_blocks_state {
3029
3030 /* mode */
3031 enum {
3032 TYPE, /* get type bits (3, including end bit) */
3033 LENS, /* get lengths for stored */
3034 STORED, /* processing stored block */
3035 TABLE, /* get table lengths */
3036 BTREE, /* get bit lengths tree for a dynamic block */
3037 DTREE, /* get length, distance trees for a dynamic block */
3038 CODES, /* processing fixed or dynamic block */
3039 DRY, /* output remaining window bytes */
3040 DONEB, /* finished last block, done */
3041 BADB} /* got a data error--stuck here */
3042 mode; /* current inflate_block mode */
3043
3044 /* mode dependent information */
3045 union {
3046 uInt left; /* if STORED, bytes left to copy */
3047 struct {
3048 uInt table; /* table lengths (14 bits) */
3049 uInt index; /* index into blens (or border) */
3050 uIntf *blens; /* bit lengths of codes */
3051 uInt bb; /* bit length tree depth */
3052 inflate_huft *tb; /* bit length decoding tree */
3053 int nblens; /* # elements allocated at blens */
3054 } trees; /* if DTREE, decoding info for trees */
3055 struct {
3056 inflate_huft *tl, *td; /* trees to free */
3057 inflate_codes_statef
3058 *codes;
3059 } decode; /* if CODES, current state */
3060 } sub; /* submode */
3061 uInt last; /* true if this block is the last block */
3062
3063 /* mode independent information */
3064 uInt bitk; /* bits in bit buffer */
3065 uLong bitb; /* bit buffer */
3066 Bytef *window; /* sliding window */
3067 Bytef *end; /* one byte after sliding window */
3068 Bytef *read; /* window read pointer */
3069 Bytef *write; /* window write pointer */
3070 check_func checkfn; /* check function */
3071 uLong check; /* check on output */
3072
3073};
3074
3075
3076/* defines for inflate input/output */
3077/* update pointers and return */
3078#define UPDBITS {s->bitb=b;s->bitk=k;}
3079#define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3080#define UPDOUT {s->write=q;}
3081#define UPDATE {UPDBITS UPDIN UPDOUT}
3082#define LEAVE {UPDATE return inflate_flush(s,z,r);}
3083/* get bytes and bits */
3084#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3085#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3086#define NEXTBYTE (n--,*p++)
3087#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3088#define DUMPBITS(j) {b>>=(j);k-=(j);}
3089/* output bytes */
3090#define WAVAIL (q<s->read?s->read-q-1:s->end-q)
3091#define LOADOUT {q=s->write;m=WAVAIL;}
3092#define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}}
3093#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3094#define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
3095#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3096/* load local pointers */
3097#define LOAD {LOADIN LOADOUT}
3098
3099/* And'ing with mask[n] masks the lower n bits */
3100local uInt inflate_mask[] = {
3101 0x0000,
3102 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
3103 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
3104};
3105
3106/* copy as much as possible from the sliding window to the output area */
3107local int inflate_flush OF((
3108 inflate_blocks_statef *,
3109 z_stream *,
3110 int));
3111
3112/*+++++*/
3113/* inffast.h -- header to use inffast.c
3114 * Copyright (C) 1995 Mark Adler
3115 * For conditions of distribution and use, see copyright notice in zlib.h
3116 */
3117
3118/* WARNING: this file should *not* be used by applications. It is
3119 part of the implementation of the compression library and is
3120 subject to change. Applications should only use zlib.h.
3121 */
3122
3123local int inflate_fast OF((
3124 uInt,
3125 uInt,
3126 inflate_huft *,
3127 inflate_huft *,
3128 inflate_blocks_statef *,
3129 z_stream *));
3130
3131
3132/*+++++*/
3133/* infblock.c -- interpret and process block types to last block
3134 * Copyright (C) 1995 Mark Adler
3135 * For conditions of distribution and use, see copyright notice in zlib.h
3136 */
3137
3138/* Table for deflate from PKZIP's appnote.txt. */
3139local uInt border[] = { /* Order of the bit length code lengths */
3140 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3141
3142/*
3143 Notes beyond the 1.93a appnote.txt:
3144
3145 1. Distance pointers never point before the beginning of the output
3146 stream.
3147 2. Distance pointers can point back across blocks, up to 32k away.
3148 3. There is an implied maximum of 7 bits for the bit length table and
3149 15 bits for the actual data.
3150 4. If only one code exists, then it is encoded using one bit. (Zero
3151 would be more efficient, but perhaps a little confusing.) If two
3152 codes exist, they are coded using one bit each (0 and 1).
3153 5. There is no way of sending zero distance codes--a dummy must be
3154 sent if there are none. (History: a pre 2.0 version of PKZIP would
3155 store blocks with no distance codes, but this was discovered to be
3156 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3157 zero distance codes, which is sent as one code of zero bits in
3158 length.
3159 6. There are up to 286 literal/length codes. Code 256 represents the
3160 end-of-block. Note however that the static length tree defines
3161 288 codes just to fill out the Huffman codes. Codes 286 and 287
3162 cannot be used though, since there is no length base or extra bits
3163 defined for them. Similarily, there are up to 30 distance codes.
3164 However, static trees define 32 codes (all 5 bits) to fill out the
3165 Huffman codes, but the last two had better not show up in the data.
3166 7. Unzip can check dynamic Huffman blocks for complete code sets.
3167 The exception is that a single code would not be complete (see #4).
3168 8. The five bits following the block type is really the number of
3169 literal codes sent minus 257.
3170 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3171 (1+6+6). Therefore, to output three times the length, you output
3172 three codes (1+1+1), whereas to output four times the same length,
3173 you only need two codes (1+3). Hmm.
3174 10. In the tree reconstruction algorithm, Code = Code + Increment
3175 only if BitLength(i) is not zero. (Pretty obvious.)
3176 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3177 12. Note: length code 284 can represent 227-258, but length code 285
3178 really is 258. The last length deserves its own, short code
3179 since it gets used a lot in very redundant files. The length
3180 258 is special since 258 - 3 (the min match length) is 255.
3181 13. The literal/length and distance code bit lengths are read as a
3182 single stream of lengths. It is possible (and advantageous) for
3183 a repeat code (16, 17, or 18) to go across the boundary between
3184 the two sets of lengths.
3185 */
3186
3187
3188local void inflate_blocks_reset(s, z, c)
3189inflate_blocks_statef *s;
3190z_stream *z;
3191uLongf *c;
3192{
3193 if (s->checkfn != Z_NULL)
3194 *c = s->check;
3195 if (s->mode == BTREE || s->mode == DTREE)
3196 ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3197 if (s->mode == CODES)
3198 {
3199 inflate_codes_free(s->sub.decode.codes, z);
3200 inflate_trees_free(s->sub.decode.td, z);
3201 inflate_trees_free(s->sub.decode.tl, z);
3202 }
3203 s->mode = TYPE;
3204 s->bitk = 0;
3205 s->bitb = 0;
3206 s->read = s->write = s->window;
3207 if (s->checkfn != Z_NULL)
3208 s->check = (*s->checkfn)(0L, Z_NULL, 0);
3209 Trace((stderr, "inflate: blocks reset\n"));
3210}
3211
3212
3213local inflate_blocks_statef *inflate_blocks_new(z, c, w)
3214z_stream *z;
3215check_func c;
3216uInt w;
3217{
3218 inflate_blocks_statef *s;
3219
3220 if ((s = (inflate_blocks_statef *)ZALLOC
3221 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3222 return s;
3223 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3224 {
3225 ZFREE(z, s, sizeof(struct inflate_blocks_state));
3226 return Z_NULL;
3227 }
3228 s->end = s->window + w;
3229 s->checkfn = c;
3230 s->mode = TYPE;
3231 Trace((stderr, "inflate: blocks allocated\n"));
3232 inflate_blocks_reset(s, z, &s->check);
3233 return s;
3234}
3235
3236
3237local int inflate_blocks(s, z, r)
3238inflate_blocks_statef *s;
3239z_stream *z;
3240int r;
3241{
3242 uInt t; /* temporary storage */
3243 uLong b; /* bit buffer */
3244 uInt k; /* bits in bit buffer */
3245 Bytef *p; /* input data pointer */
3246 uInt n; /* bytes available there */
3247 Bytef *q; /* output window write pointer */
3248 uInt m; /* bytes to end of window or read pointer */
3249
3250 /* copy input/output information to locals (UPDATE macro restores) */
3251 LOAD
3252
3253 /* process input based on current state */
3254 while (1) switch (s->mode)
3255 {
3256 case TYPE:
3257 NEEDBITS(3)
3258 t = (uInt)b & 7;
3259 s->last = t & 1;
3260 switch (t >> 1)
3261 {
3262 case 0: /* stored */
3263 Trace((stderr, "inflate: stored block%s\n",
3264 s->last ? " (last)" : ""));
3265 DUMPBITS(3)
3266 t = k & 7; /* go to byte boundary */
3267 DUMPBITS(t)
3268 s->mode = LENS; /* get length of stored block */
3269 break;
3270 case 1: /* fixed */
3271 Trace((stderr, "inflate: fixed codes block%s\n",
3272 s->last ? " (last)" : ""));
3273 {
3274 uInt bl, bd;
3275 inflate_huft *tl, *td;
3276
3277 inflate_trees_fixed(&bl, &bd, &tl, &td);
3278 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3279 if (s->sub.decode.codes == Z_NULL)
3280 {
3281 r = Z_MEM_ERROR;
3282 LEAVE
3283 }
3284 s->sub.decode.tl = Z_NULL; /* don't try to free these */
3285 s->sub.decode.td = Z_NULL;
3286 }
3287 DUMPBITS(3)
3288 s->mode = CODES;
3289 break;
3290 case 2: /* dynamic */
3291 Trace((stderr, "inflate: dynamic codes block%s\n",
3292 s->last ? " (last)" : ""));
3293 DUMPBITS(3)
3294 s->mode = TABLE;
3295 break;
3296 case 3: /* illegal */
3297 DUMPBITS(3)
3298 s->mode = BADB;
3299 z->msg = "invalid block type";
3300 r = Z_DATA_ERROR;
3301 LEAVE
3302 }
3303 break;
3304 case LENS:
3305 NEEDBITS(32)
3306 if (((~b) >> 16) != (b & 0xffff))
3307 {
3308 s->mode = BADB;
3309 z->msg = "invalid stored block lengths";
3310 r = Z_DATA_ERROR;
3311 LEAVE
3312 }
3313 s->sub.left = (uInt)b & 0xffff;
3314 b = k = 0; /* dump bits */
3315 Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3316 s->mode = s->sub.left ? STORED : TYPE;
3317 break;
3318 case STORED:
3319 if (n == 0)
3320 LEAVE
3321 NEEDOUT
3322 t = s->sub.left;
3323 if (t > n) t = n;
3324 if (t > m) t = m;
3325 zmemcpy(q, p, t);
3326 p += t; n -= t;
3327 q += t; m -= t;
3328 if ((s->sub.left -= t) != 0)
3329 break;
3330 Tracev((stderr, "inflate: stored end, %lu total out\n",
3331 z->total_out + (q >= s->read ? q - s->read :
3332 (s->end - s->read) + (q - s->window))));
3333 s->mode = s->last ? DRY : TYPE;
3334 break;
3335 case TABLE:
3336 NEEDBITS(14)
3337 s->sub.trees.table = t = (uInt)b & 0x3fff;
3338#ifndef PKZIP_BUG_WORKAROUND
3339 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3340 {
3341 s->mode = BADB;
3342 z->msg = "too many length or distance symbols";
3343 r = Z_DATA_ERROR;
3344 LEAVE
3345 }
3346#endif
3347 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3348 if (t < 19)
3349 t = 19;
3350 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3351 {
3352 r = Z_MEM_ERROR;
3353 LEAVE
3354 }
3355 s->sub.trees.nblens = t;
3356 DUMPBITS(14)
3357 s->sub.trees.index = 0;
3358 Tracev((stderr, "inflate: table sizes ok\n"));
3359 s->mode = BTREE;
3360 case BTREE:
3361 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3362 {
3363 NEEDBITS(3)
3364 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3365 DUMPBITS(3)
3366 }
3367 while (s->sub.trees.index < 19)
3368 s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3369 s->sub.trees.bb = 7;
3370 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3371 &s->sub.trees.tb, z);
3372 if (t != Z_OK)
3373 {
3374 r = t;
3375 if (r == Z_DATA_ERROR)
3376 s->mode = BADB;
3377 LEAVE
3378 }
3379 s->sub.trees.index = 0;
3380 Tracev((stderr, "inflate: bits tree ok\n"));
3381 s->mode = DTREE;
3382 case DTREE:
3383 while (t = s->sub.trees.table,
3384 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3385 {
3386 inflate_huft *h;
3387 uInt i, j, c;
3388
3389 t = s->sub.trees.bb;
3390 NEEDBITS(t)
3391 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3392 t = h->word.what.Bits;
3393 c = h->more.Base;
3394 if (c < 16)
3395 {
3396 DUMPBITS(t)
3397 s->sub.trees.blens[s->sub.trees.index++] = c;
3398 }
3399 else /* c == 16..18 */
3400 {
3401 i = c == 18 ? 7 : c - 14;
3402 j = c == 18 ? 11 : 3;
3403 NEEDBITS(t + i)
3404 DUMPBITS(t)
3405 j += (uInt)b & inflate_mask[i];
3406 DUMPBITS(i)
3407 i = s->sub.trees.index;
3408 t = s->sub.trees.table;
3409 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3410 (c == 16 && i < 1))
3411 {
3412 s->mode = BADB;
3413 z->msg = "invalid bit length repeat";
3414 r = Z_DATA_ERROR;
3415 LEAVE
3416 }
3417 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3418 do {
3419 s->sub.trees.blens[i++] = c;
3420 } while (--j);
3421 s->sub.trees.index = i;
3422 }
3423 }
3424 inflate_trees_free(s->sub.trees.tb, z);
3425 s->sub.trees.tb = Z_NULL;
3426 {
3427 uInt bl, bd;
3428 inflate_huft *tl, *td;
3429 inflate_codes_statef *c;
3430
3431 bl = 9; /* must be <= 9 for lookahead assumptions */
3432 bd = 6; /* must be <= 9 for lookahead assumptions */
3433 t = s->sub.trees.table;
3434 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3435 s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3436 if (t != Z_OK)
3437 {
3438 if (t == (uInt)Z_DATA_ERROR)
3439 s->mode = BADB;
3440 r = t;
3441 LEAVE
3442 }
3443 Tracev((stderr, "inflate: trees ok\n"));
3444 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3445 {
3446 inflate_trees_free(td, z);
3447 inflate_trees_free(tl, z);
3448 r = Z_MEM_ERROR;
3449 LEAVE
3450 }
3451 ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3452 s->sub.decode.codes = c;
3453 s->sub.decode.tl = tl;
3454 s->sub.decode.td = td;
3455 }
3456 s->mode = CODES;
3457 case CODES:
3458 UPDATE
3459 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3460 return inflate_flush(s, z, r);
3461 r = Z_OK;
3462 inflate_codes_free(s->sub.decode.codes, z);
3463 inflate_trees_free(s->sub.decode.td, z);
3464 inflate_trees_free(s->sub.decode.tl, z);
3465 LOAD
3466 Tracev((stderr, "inflate: codes end, %lu total out\n",
3467 z->total_out + (q >= s->read ? q - s->read :
3468 (s->end - s->read) + (q - s->window))));
3469 if (!s->last)
3470 {
3471 s->mode = TYPE;
3472 break;
3473 }
3474 if (k > 7) /* return unused byte, if any */
3475 {
3476 Assert(k < 16, "inflate_codes grabbed too many bytes")
3477 k -= 8;
3478 n++;
3479 p--; /* can always return one */
3480 }
3481 s->mode = DRY;
3482 case DRY:
3483 FLUSH
3484 if (s->read != s->write)
3485 LEAVE
3486 s->mode = DONEB;
3487 case DONEB:
3488 r = Z_STREAM_END;
3489 LEAVE
3490 case BADB:
3491 r = Z_DATA_ERROR;
3492 LEAVE
3493 default:
3494 r = Z_STREAM_ERROR;
3495 LEAVE
3496 }
3497}
3498
3499
3500local int inflate_blocks_free(s, z, c)
3501inflate_blocks_statef *s;
3502z_stream *z;
3503uLongf *c;
3504{
3505 inflate_blocks_reset(s, z, c);
3506 ZFREE(z, s->window, s->end - s->window);
3507 ZFREE(z, s, sizeof(struct inflate_blocks_state));
3508 Trace((stderr, "inflate: blocks freed\n"));
3509 return Z_OK;
3510}
3511
3512/*
3513 * This subroutine adds the data at next_in/avail_in to the output history
3514 * without performing any output. The output buffer must be "caught up";
3515 * i.e. no pending output (hence s->read equals s->write), and the state must
3516 * be BLOCKS (i.e. we should be willing to see the start of a series of
3517 * BLOCKS). On exit, the output will also be caught up, and the checksum
3518 * will have been updated if need be.
3519 */
3520local int inflate_addhistory(s, z)
3521inflate_blocks_statef *s;
3522z_stream *z;
3523{
3524 uLong b; /* bit buffer */ /* NOT USED HERE */
3525 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
3526 uInt t; /* temporary storage */
3527 Bytef *p; /* input data pointer */
3528 uInt n; /* bytes available there */
3529 Bytef *q; /* output window write pointer */
3530 uInt m; /* bytes to end of window or read pointer */
3531
3532 if (s->read != s->write)
3533 return Z_STREAM_ERROR;
3534 if (s->mode != TYPE)
3535 return Z_DATA_ERROR;
3536
3537 /* we're ready to rock */
3538 LOAD
3539 /* while there is input ready, copy to output buffer, moving
3540 * pointers as needed.
3541 */
3542 while (n) {
3543 t = n; /* how many to do */
3544 /* is there room until end of buffer? */
3545 if (t > m) t = m;
3546 /* update check information */
3547 if (s->checkfn != Z_NULL)
3548 s->check = (*s->checkfn)(s->check, q, t);
3549 zmemcpy(q, p, t);
3550 q += t;
3551 p += t;
3552 n -= t;
3553 z->total_out += t;
3554 s->read = q; /* drag read pointer forward */
3555/* WRAP */ /* expand WRAP macro by hand to handle s->read */
3556 if (q == s->end) {
3557 s->read = q = s->window;
3558 m = WAVAIL;
3559 }
3560 }
3561 UPDATE
3562 return Z_OK;
3563}
3564
3565
3566/*
3567 * At the end of a Deflate-compressed PPP packet, we expect to have seen
3568 * a `stored' block type value but not the (zero) length bytes.
3569 */
3570local int inflate_packet_flush(s)
3571 inflate_blocks_statef *s;
3572{
3573 if (s->mode != LENS)
3574 return Z_DATA_ERROR;
3575 s->mode = TYPE;
3576 return Z_OK;
3577}
3578
3579
3580/*+++++*/
3581/* inftrees.c -- generate Huffman trees for efficient decoding
3582 * Copyright (C) 1995 Mark Adler
3583 * For conditions of distribution and use, see copyright notice in zlib.h
3584 */
3585
3586/* simplify the use of the inflate_huft type with some defines */
3587#define base more.Base
3588#define next more.Next
3589#define exop word.what.Exop
3590#define bits word.what.Bits
3591
3592
3593local int huft_build OF((
3594 uIntf *, /* code lengths in bits */
3595 uInt, /* number of codes */
3596 uInt, /* number of "simple" codes */
3597 uIntf *, /* list of base values for non-simple codes */
3598 uIntf *, /* list of extra bits for non-simple codes */
3599 inflate_huft * FAR*,/* result: starting table */
3600 uIntf *, /* maximum lookup bits (returns actual) */
3601 z_stream *)); /* for zalloc function */
3602
3603local voidpf falloc OF((
3604 voidpf, /* opaque pointer (not used) */
3605 uInt, /* number of items */
3606 uInt)); /* size of item */
3607
3608local void ffree OF((
3609 voidpf q, /* opaque pointer (not used) */
3610 voidpf p, /* what to free (not used) */
3611 uInt n)); /* number of bytes (not used) */
3612
3613/* Tables for deflate from PKZIP's appnote.txt. */
3614local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
3615 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
3616 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
3617 /* actually lengths - 2; also see note #13 above about 258 */
3618local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
3619 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3620 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
3621local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
3622 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
3623 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
3624 8193, 12289, 16385, 24577};
3625local uInt cpdext[] = { /* Extra bits for distance codes */
3626 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
3627 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
3628 12, 12, 13, 13};
3629
3630/*
3631 Huffman code decoding is performed using a multi-level table lookup.
3632 The fastest way to decode is to simply build a lookup table whose
3633 size is determined by the longest code. However, the time it takes
3634 to build this table can also be a factor if the data being decoded
3635 is not very long. The most common codes are necessarily the
3636 shortest codes, so those codes dominate the decoding time, and hence
3637 the speed. The idea is you can have a shorter table that decodes the
3638 shorter, more probable codes, and then point to subsidiary tables for
3639 the longer codes. The time it costs to decode the longer codes is
3640 then traded against the time it takes to make longer tables.
3641
3642 This results of this trade are in the variables lbits and dbits
3643 below. lbits is the number of bits the first level table for literal/
3644 length codes can decode in one step, and dbits is the same thing for
3645 the distance codes. Subsequent tables are also less than or equal to
3646 those sizes. These values may be adjusted either when all of the
3647 codes are shorter than that, in which case the longest code length in
3648 bits is used, or when the shortest code is *longer* than the requested
3649 table size, in which case the length of the shortest code in bits is
3650 used.
3651
3652 There are two different values for the two tables, since they code a
3653 different number of possibilities each. The literal/length table
3654 codes 286 possible values, or in a flat code, a little over eight
3655 bits. The distance table codes 30 possible values, or a little less
3656 than five bits, flat. The optimum values for speed end up being
3657 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
3658 The optimum values may differ though from machine to machine, and
3659 possibly even between compilers. Your mileage may vary.
3660 */
3661
3662
3663/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
3664#define BMAX 15 /* maximum bit length of any code */
3665#define N_MAX 288 /* maximum number of codes in any set */
3666
3667#ifdef DEBUG_ZLIB
3668 uInt inflate_hufts;
3669#endif
3670
3671local int huft_build(b, n, s, d, e, t, m, zs)
3672uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
3673uInt n; /* number of codes (assumed <= N_MAX) */
3674uInt s; /* number of simple-valued codes (0..s-1) */
3675uIntf *d; /* list of base values for non-simple codes */
3676uIntf *e; /* list of extra bits for non-simple codes */
3677inflate_huft * FAR *t; /* result: starting table */
3678uIntf *m; /* maximum lookup bits, returns actual */
3679z_stream *zs; /* for zalloc function */
3680/* Given a list of code lengths and a maximum table size, make a set of
3681 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
3682 if the given code set is incomplete (the tables are still built in this
3683 case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
3684 over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
3685{
3686
3687 uInt a; /* counter for codes of length k */
3688 uInt c[BMAX+1]; /* bit length count table */
3689 uInt f; /* i repeats in table every f entries */
3690 int g; /* maximum code length */
3691 int h; /* table level */
3692 register uInt i; /* counter, current code */
3693 register uInt j; /* counter */
3694 register int k; /* number of bits in current code */
3695 int l; /* bits per table (returned in m) */
3696 register uIntf *p; /* pointer into c[], b[], or v[] */
3697 inflate_huft *q; /* points to current table */
3698 struct inflate_huft_s r; /* table entry for structure assignment */
3699 inflate_huft *u[BMAX]; /* table stack */
3700 uInt v[N_MAX]; /* values in order of bit length */
3701 register int w; /* bits before this table == (l * h) */
3702 uInt x[BMAX+1]; /* bit offsets, then code stack */
3703 uIntf *xp; /* pointer into x */
3704 int y; /* number of dummy codes added */
3705 uInt z; /* number of entries in current table */
3706
3707
3708 /* Generate counts for each bit length */
3709 p = c;
3710#define C0 *p++ = 0;
3711#define C2 C0 C0 C0 C0
3712#define C4 C2 C2 C2 C2
3713 C4 /* clear c[]--assume BMAX+1 is 16 */
3714 p = b; i = n;
3715 do {
3716 c[*p++]++; /* assume all entries <= BMAX */
3717 } while (--i);
3718 if (c[0] == n) /* null input--all zero length codes */
3719 {
3720 *t = (inflate_huft *)Z_NULL;
3721 *m = 0;
3722 return Z_OK;
3723 }
3724
3725
3726 /* Find minimum and maximum length, bound *m by those */
3727 l = *m;
3728 for (j = 1; j <= BMAX; j++)
3729 if (c[j])
3730 break;
3731 k = j; /* minimum code length */
3732 if ((uInt)l < j)
3733 l = j;
3734 for (i = BMAX; i; i--)
3735 if (c[i])
3736 break;
3737 g = i; /* maximum code length */
3738 if ((uInt)l > i)
3739 l = i;
3740 *m = l;
3741
3742
3743 /* Adjust last length count to fill out codes, if needed */
3744 for (y = 1 << j; j < i; j++, y <<= 1)
3745 if ((y -= c[j]) < 0)
3746 return Z_DATA_ERROR;
3747 if ((y -= c[i]) < 0)
3748 return Z_DATA_ERROR;
3749 c[i] += y;
3750
3751
3752 /* Generate starting offsets into the value table for each length */
3753 x[1] = j = 0;
3754 p = c + 1; xp = x + 2;
3755 while (--i) { /* note that i == g from above */
3756 *xp++ = (j += *p++);
3757 }
3758
3759
3760 /* Make a table of values in order of bit lengths */
3761 p = b; i = 0;
3762 do {
3763 if ((j = *p++) != 0)
3764 v[x[j]++] = i;
3765 } while (++i < n);
3766
3767
3768 /* Generate the Huffman codes and for each, make the table entries */
3769 x[0] = i = 0; /* first Huffman code is zero */
3770 p = v; /* grab values in bit order */
3771 h = -1; /* no tables yet--level -1 */
3772 w = -l; /* bits decoded == (l * h) */
3773 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
3774 q = (inflate_huft *)Z_NULL; /* ditto */
3775 z = 0; /* ditto */
3776
3777 /* go through the bit lengths (k already is bits in shortest code) */
3778 for (; k <= g; k++)
3779 {
3780 a = c[k];
3781 while (a--)
3782 {
3783 /* here i is the Huffman code of length k bits for value *p */
3784 /* make tables up to required level */
3785 while (k > w + l)
3786 {
3787 h++;
3788 w += l; /* previous table always l bits */
3789
3790 /* compute minimum size table less than or equal to l bits */
3791 z = (z = g - w) > (uInt)l ? l : z; /* table size upper limit */
3792 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
3793 { /* too few codes for k-w bit table */
3794 f -= a + 1; /* deduct codes from patterns left */
3795 xp = c + k;
3796 if (j < z)
3797 while (++j < z) /* try smaller tables up to z bits */
3798 {
3799 if ((f <<= 1) <= *++xp)
3800 break; /* enough codes to use up j bits */
3801 f -= *xp; /* else deduct codes from patterns */
3802 }
3803 }
3804 z = 1 << j; /* table entries for j-bit table */
3805
3806 /* allocate and link in new table */
3807 if ((q = (inflate_huft *)ZALLOC
3808 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
3809 {
3810 if (h)
3811 inflate_trees_free(u[0], zs);
3812 return Z_MEM_ERROR; /* not enough memory */
3813 }
3814 q->word.Nalloc = z + 1;
3815#ifdef DEBUG_ZLIB
3816 inflate_hufts += z + 1;
3817#endif
3818 *t = q + 1; /* link to list for huft_free() */
3819 *(t = &(q->next)) = Z_NULL;
3820 u[h] = ++q; /* table starts after link */
3821
3822 /* connect to last table, if there is one */
3823 if (h)
3824 {
3825 x[h] = i; /* save pattern for backing up */
3826 r.bits = (Byte)l; /* bits to dump before this table */
3827 r.exop = (Byte)j; /* bits in this table */
3828 r.next = q; /* pointer to this table */
3829 j = i >> (w - l); /* (get around Turbo C bug) */
3830 u[h-1][j] = r; /* connect to last table */
3831 }
3832 }
3833
3834 /* set up table entry in r */
3835 r.bits = (Byte)(k - w);
3836 if (p >= v + n)
3837 r.exop = 128 + 64; /* out of values--invalid code */
3838 else if (*p < s)
3839 {
3840 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
3841 r.base = *p++; /* simple code is just the value */
3842 }
3843 else
3844 {
3845 r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */
3846 r.base = d[*p++ - s];
3847 }
3848
3849 /* fill code-like entries with r */
3850 f = 1 << (k - w);
3851 for (j = i >> w; j < z; j += f)
3852 q[j] = r;
3853
3854 /* backwards increment the k-bit code i */
3855 for (j = 1 << (k - 1); i & j; j >>= 1)
3856 i ^= j;
3857 i ^= j;
3858
3859 /* backup over finished tables */
3860 while ((i & ((1 << w) - 1)) != x[h])
3861 {
3862 h--; /* don't need to update q */
3863 w -= l;
3864 }
3865 }
3866 }
3867
3868
3869 /* Return Z_BUF_ERROR if we were given an incomplete table */
3870 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
3871}
3872
3873
3874local int inflate_trees_bits(c, bb, tb, z)
3875uIntf *c; /* 19 code lengths */
3876uIntf *bb; /* bits tree desired/actual depth */
3877inflate_huft * FAR *tb; /* bits tree result */
3878z_stream *z; /* for zfree function */
3879{
3880 int r;
3881
3882 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
3883 if (r == Z_DATA_ERROR)
3884 z->msg = "oversubscribed dynamic bit lengths tree";
3885 else if (r == Z_BUF_ERROR)
3886 {
3887 inflate_trees_free(*tb, z);
3888 z->msg = "incomplete dynamic bit lengths tree";
3889 r = Z_DATA_ERROR;
3890 }
3891 return r;
3892}
3893
3894
3895local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
3896uInt nl; /* number of literal/length codes */
3897uInt nd; /* number of distance codes */
3898uIntf *c; /* that many (total) code lengths */
3899uIntf *bl; /* literal desired/actual bit depth */
3900uIntf *bd; /* distance desired/actual bit depth */
3901inflate_huft * FAR *tl; /* literal/length tree result */
3902inflate_huft * FAR *td; /* distance tree result */
3903z_stream *z; /* for zfree function */
3904{
3905 int r;
3906
3907 /* build literal/length tree */
3908 if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
3909 {
3910 if (r == Z_DATA_ERROR)
3911 z->msg = "oversubscribed literal/length tree";
3912 else if (r == Z_BUF_ERROR)
3913 {
3914 inflate_trees_free(*tl, z);
3915 z->msg = "incomplete literal/length tree";
3916 r = Z_DATA_ERROR;
3917 }
3918 return r;
3919 }
3920
3921 /* build distance tree */
3922 if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
3923 {
3924 if (r == Z_DATA_ERROR)
3925 z->msg = "oversubscribed literal/length tree";
3926 else if (r == Z_BUF_ERROR) {
3927#ifdef PKZIP_BUG_WORKAROUND
3928 r = Z_OK;
3929 }
3930#else
3931 inflate_trees_free(*td, z);
3932 z->msg = "incomplete literal/length tree";
3933 r = Z_DATA_ERROR;
3934 }
3935 inflate_trees_free(*tl, z);
3936 return r;
3937#endif
3938 }
3939
3940 /* done */
3941 return Z_OK;
3942}
3943
3944
3945/* build fixed tables only once--keep them here */
3946local int fixed_lock = 0;
3947local int fixed_built = 0;
3948#define FIXEDH 530 /* number of hufts used by fixed tables */
3949local uInt fixed_left = FIXEDH;
3950local inflate_huft fixed_mem[FIXEDH];
3951local uInt fixed_bl;
3952local uInt fixed_bd;
3953local inflate_huft *fixed_tl;
3954local inflate_huft *fixed_td;
3955
3956
3957local voidpf falloc(q, n, s)
3958voidpf q; /* opaque pointer (not used) */
3959uInt n; /* number of items */
3960uInt s; /* size of item */
3961{
3962 Assert(s == sizeof(inflate_huft) && n <= fixed_left,
3963 "inflate_trees falloc overflow");
3964 if (q) s++; /* to make some compilers happy */
3965 fixed_left -= n;
3966 return (voidpf)(fixed_mem + fixed_left);
3967}
3968
3969
3970local void ffree(q, p, n)
3971voidpf q;
3972voidpf p;
3973uInt n;
3974{
3975 Assert(0, "inflate_trees ffree called!");
3976 if (q) q = p; /* to make some compilers happy */
3977}
3978
3979
3980local int inflate_trees_fixed(bl, bd, tl, td)
3981uIntf *bl; /* literal desired/actual bit depth */
3982uIntf *bd; /* distance desired/actual bit depth */
3983inflate_huft * FAR *tl; /* literal/length tree result */
3984inflate_huft * FAR *td; /* distance tree result */
3985{
3986 /* build fixed tables if not built already--lock out other instances */
3987 while (++fixed_lock > 1)
3988 fixed_lock--;
3989 if (!fixed_built)
3990 {
3991 int k; /* temporary variable */
3992 unsigned c[288]; /* length list for huft_build */
3993 z_stream z; /* for falloc function */
3994
3995 /* set up fake z_stream for memory routines */
3996 z.zalloc = falloc;
3997 z.zfree = ffree;
3998 z.opaque = Z_NULL;
3999
4000 /* literal table */
4001 for (k = 0; k < 144; k++)
4002 c[k] = 8;
4003 for (; k < 256; k++)
4004 c[k] = 9;
4005 for (; k < 280; k++)
4006 c[k] = 7;
4007 for (; k < 288; k++)
4008 c[k] = 8;
4009 fixed_bl = 7;
4010 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4011
4012 /* distance table */
4013 for (k = 0; k < 30; k++)
4014 c[k] = 5;
4015 fixed_bd = 5;
4016 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4017
4018 /* done */
4019 fixed_built = 1;
4020 }
4021 fixed_lock--;
4022 *bl = fixed_bl;
4023 *bd = fixed_bd;
4024 *tl = fixed_tl;
4025 *td = fixed_td;
4026 return Z_OK;
4027}
4028
4029
4030local int inflate_trees_free(t, z)
4031inflate_huft *t; /* table to free */
4032z_stream *z; /* for zfree function */
4033/* Free the malloc'ed tables built by huft_build(), which makes a linked
4034 list of the tables it made, with the links in a dummy first entry of
4035 each table. */
4036{
4037 register inflate_huft *p, *q;
4038
4039 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4040 p = t;
4041 while (p != Z_NULL)
4042 {
4043 q = (--p)->next;
4044 ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft));
4045 p = q;
4046 }
4047 return Z_OK;
4048}
4049
4050/*+++++*/
4051/* infcodes.c -- process literals and length/distance pairs
4052 * Copyright (C) 1995 Mark Adler
4053 * For conditions of distribution and use, see copyright notice in zlib.h
4054 */
4055
4056/* simplify the use of the inflate_huft type with some defines */
4057#define base more.Base
4058#define next more.Next
4059#define exop word.what.Exop
4060#define bits word.what.Bits
4061
4062/* inflate codes private state */
4063struct inflate_codes_state {
4064
4065 /* mode */
4066 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4067 START, /* x: set up for LEN */
4068 LEN, /* i: get length/literal/eob next */
4069 LENEXT, /* i: getting length extra (have base) */
4070 DIST, /* i: get distance next */
4071 DISTEXT, /* i: getting distance extra */
4072 COPY, /* o: copying bytes in window, waiting for space */
4073 LIT, /* o: got literal, waiting for output space */
4074 WASH, /* o: got eob, possibly still output waiting */
4075 END, /* x: got eob and all data flushed */
4076 BADCODE} /* x: got error */
4077 mode; /* current inflate_codes mode */
4078
4079 /* mode dependent information */
4080 uInt len;
4081 union {
4082 struct {
4083 inflate_huft *tree; /* pointer into tree */
4084 uInt need; /* bits needed */
4085 } code; /* if LEN or DIST, where in tree */
4086 uInt lit; /* if LIT, literal */
4087 struct {
4088 uInt get; /* bits to get for extra */
4089 uInt dist; /* distance back to copy from */
4090 } copy; /* if EXT or COPY, where and how much */
4091 } sub; /* submode */
4092
4093 /* mode independent information */
4094 Byte lbits; /* ltree bits decoded per branch */
4095 Byte dbits; /* dtree bits decoder per branch */
4096 inflate_huft *ltree; /* literal/length/eob tree */
4097 inflate_huft *dtree; /* distance tree */
4098
4099};
4100
4101
4102local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4103uInt bl, bd;
4104inflate_huft *tl, *td;
4105z_stream *z;
4106{
4107 inflate_codes_statef *c;
4108
4109 if ((c = (inflate_codes_statef *)
4110 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4111 {
4112 c->mode = START;
4113 c->lbits = (Byte)bl;
4114 c->dbits = (Byte)bd;
4115 c->ltree = tl;
4116 c->dtree = td;
4117 Tracev((stderr, "inflate: codes new\n"));
4118 }
4119 return c;
4120}
4121
4122
4123local int inflate_codes(s, z, r)
4124inflate_blocks_statef *s;
4125z_stream *z;
4126int r;
4127{
4128 uInt j; /* temporary storage */
4129 inflate_huft *t; /* temporary pointer */
4130 uInt e; /* extra bits or operation */
4131 uLong b; /* bit buffer */
4132 uInt k; /* bits in bit buffer */
4133 Bytef *p; /* input data pointer */
4134 uInt n; /* bytes available there */
4135 Bytef *q; /* output window write pointer */
4136 uInt m; /* bytes to end of window or read pointer */
4137 Bytef *f; /* pointer to copy strings from */
4138 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4139
4140 /* copy input/output information to locals (UPDATE macro restores) */
4141 LOAD
4142
4143 /* process input and output based on current state */
4144 while (1) switch (c->mode)
4145 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4146 case START: /* x: set up for LEN */
4147#ifndef SLOW
4148 if (m >= 258 && n >= 10)
4149 {
4150 UPDATE
4151 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4152 LOAD
4153 if (r != Z_OK)
4154 {
4155 c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4156 break;
4157 }
4158 }
4159#endif /* !SLOW */
4160 c->sub.code.need = c->lbits;
4161 c->sub.code.tree = c->ltree;
4162 c->mode = LEN;
4163 case LEN: /* i: get length/literal/eob next */
4164 j = c->sub.code.need;
4165 NEEDBITS(j)
4166 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4167 DUMPBITS(t->bits)
4168 e = (uInt)(t->exop);
4169 if (e == 0) /* literal */
4170 {
4171 c->sub.lit = t->base;
4172 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4173 "inflate: literal '%c'\n" :
4174 "inflate: literal 0x%02x\n", t->base));
4175 c->mode = LIT;
4176 break;
4177 }
4178 if (e & 16) /* length */
4179 {
4180 c->sub.copy.get = e & 15;
4181 c->len = t->base;
4182 c->mode = LENEXT;
4183 break;
4184 }
4185 if ((e & 64) == 0) /* next table */
4186 {
4187 c->sub.code.need = e;
4188 c->sub.code.tree = t->next;
4189 break;
4190 }
4191 if (e & 32) /* end of block */
4192 {
4193 Tracevv((stderr, "inflate: end of block\n"));
4194 c->mode = WASH;
4195 break;
4196 }
4197 c->mode = BADCODE; /* invalid code */
4198 z->msg = "invalid literal/length code";
4199 r = Z_DATA_ERROR;
4200 LEAVE
4201 case LENEXT: /* i: getting length extra (have base) */
4202 j = c->sub.copy.get;
4203 NEEDBITS(j)
4204 c->len += (uInt)b & inflate_mask[j];
4205 DUMPBITS(j)
4206 c->sub.code.need = c->dbits;
4207 c->sub.code.tree = c->dtree;
4208 Tracevv((stderr, "inflate: length %u\n", c->len));
4209 c->mode = DIST;
4210 case DIST: /* i: get distance next */
4211 j = c->sub.code.need;
4212 NEEDBITS(j)
4213 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4214 DUMPBITS(t->bits)
4215 e = (uInt)(t->exop);
4216 if (e & 16) /* distance */
4217 {
4218 c->sub.copy.get = e & 15;
4219 c->sub.copy.dist = t->base;
4220 c->mode = DISTEXT;
4221 break;
4222 }
4223 if ((e & 64) == 0) /* next table */
4224 {
4225 c->sub.code.need = e;
4226 c->sub.code.tree = t->next;
4227 break;
4228 }
4229 c->mode = BADCODE; /* invalid code */
4230 z->msg = "invalid distance code";
4231 r = Z_DATA_ERROR;
4232 LEAVE
4233 case DISTEXT: /* i: getting distance extra */
4234 j = c->sub.copy.get;
4235 NEEDBITS(j)
4236 c->sub.copy.dist += (uInt)b & inflate_mask[j];
4237 DUMPBITS(j)
4238 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4239 c->mode = COPY;
4240 case COPY: /* o: copying bytes in window, waiting for space */
4241#ifndef __TURBOC__ /* Turbo C bug for following expression */
4242 f = (uInt)(q - s->window) < c->sub.copy.dist ?
4243 s->end - (c->sub.copy.dist - (q - s->window)) :
4244 q - c->sub.copy.dist;
4245#else
4246 f = q - c->sub.copy.dist;
4247 if ((uInt)(q - s->window) < c->sub.copy.dist)
4248 f = s->end - (c->sub.copy.dist - (q - s->window));
4249#endif
4250 while (c->len)
4251 {
4252 NEEDOUT
4253 OUTBYTE(*f++)
4254 if (f == s->end)
4255 f = s->window;
4256 c->len--;
4257 }
4258 c->mode = START;
4259 break;
4260 case LIT: /* o: got literal, waiting for output space */
4261 NEEDOUT
4262 OUTBYTE(c->sub.lit)
4263 c->mode = START;
4264 break;
4265 case WASH: /* o: got eob, possibly more output */
4266 FLUSH
4267 if (s->read != s->write)
4268 LEAVE
4269 c->mode = END;
4270 case END:
4271 r = Z_STREAM_END;
4272 LEAVE
4273 case BADCODE: /* x: got error */
4274 r = Z_DATA_ERROR;
4275 LEAVE
4276 default:
4277 r = Z_STREAM_ERROR;
4278 LEAVE
4279 }
4280}
4281
4282
4283local void inflate_codes_free(c, z)
4284inflate_codes_statef *c;
4285z_stream *z;
4286{
4287 ZFREE(z, c, sizeof(struct inflate_codes_state));
4288 Tracev((stderr, "inflate: codes free\n"));
4289}
4290
4291/*+++++*/
4292/* inflate_util.c -- data and routines common to blocks and codes
4293 * Copyright (C) 1995 Mark Adler
4294 * For conditions of distribution and use, see copyright notice in zlib.h
4295 */
4296
4297/* copy as much as possible from the sliding window to the output area */
4298local int inflate_flush(s, z, r)
4299inflate_blocks_statef *s;
4300z_stream *z;
4301int r;
4302{
4303 uInt n;
4304 Bytef *p, *q;
4305
4306 /* local copies of source and destination pointers */
4307 p = z->next_out;
4308 q = s->read;
4309
4310 /* compute number of bytes to copy as far as end of window */
4311 n = (uInt)((q <= s->write ? s->write : s->end) - q);
4312 if (n > z->avail_out) n = z->avail_out;
4313 if (n && r == Z_BUF_ERROR) r = Z_OK;
4314
4315 /* update counters */
4316 z->avail_out -= n;
4317 z->total_out += n;
4318
4319 /* update check information */
4320 if (s->checkfn != Z_NULL)
4321 s->check = (*s->checkfn)(s->check, q, n);
4322
4323 /* copy as far as end of window */
4324 if (p != NULL) {
4325 zmemcpy(p, q, n);
4326 p += n;
4327 }
4328 q += n;
4329
4330 /* see if more to copy at beginning of window */
4331 if (q == s->end)
4332 {
4333 /* wrap pointers */
4334 q = s->window;
4335 if (s->write == s->end)
4336 s->write = s->window;
4337
4338 /* compute bytes to copy */
4339 n = (uInt)(s->write - q);
4340 if (n > z->avail_out) n = z->avail_out;
4341 if (n && r == Z_BUF_ERROR) r = Z_OK;
4342
4343 /* update counters */
4344 z->avail_out -= n;
4345 z->total_out += n;
4346
4347 /* update check information */
4348 if (s->checkfn != Z_NULL)
4349 s->check = (*s->checkfn)(s->check, q, n);
4350
4351 /* copy */
4352 if (p != NULL) {
4353 zmemcpy(p, q, n);
4354 p += n;
4355 }
4356 q += n;
4357 }
4358
4359 /* update pointers */
4360 z->next_out = p;
4361 s->read = q;
4362
4363 /* done */
4364 return r;
4365}
4366
4367
4368/*+++++*/
4369/* inffast.c -- process literals and length/distance pairs fast
4370 * Copyright (C) 1995 Mark Adler
4371 * For conditions of distribution and use, see copyright notice in zlib.h
4372 */
4373
4374/* simplify the use of the inflate_huft type with some defines */
4375#define base more.Base
4376#define next more.Next
4377#define exop word.what.Exop
4378#define bits word.what.Bits
4379
4380/* macros for bit input with no checking and for returning unused bytes */
4381#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4382#define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4383
4384/* Called with number of bytes left to write in window at least 258
4385 (the maximum string length) and number of input bytes available
4386 at least ten. The ten bytes are six bytes for the longest length/
4387 distance pair plus four bytes for overloading the bit buffer. */
4388
4389local int inflate_fast(bl, bd, tl, td, s, z)
4390uInt bl, bd;
4391inflate_huft *tl, *td;
4392inflate_blocks_statef *s;
4393z_stream *z;
4394{
4395 inflate_huft *t; /* temporary pointer */
4396 uInt e; /* extra bits or operation */
4397 uLong b; /* bit buffer */
4398 uInt k; /* bits in bit buffer */
4399 Bytef *p; /* input data pointer */
4400 uInt n; /* bytes available there */
4401 Bytef *q; /* output window write pointer */
4402 uInt m; /* bytes to end of window or read pointer */
4403 uInt ml; /* mask for literal/length tree */
4404 uInt md; /* mask for distance tree */
4405 uInt c; /* bytes to copy */
4406 uInt d; /* distance back to copy from */
4407 Bytef *r; /* copy source pointer */
4408
4409 /* load input, output, bit values */
4410 LOAD
4411
4412 /* initialize masks */
4413 ml = inflate_mask[bl];
4414 md = inflate_mask[bd];
4415
4416 /* do until not enough input or output space for fast loop */
4417 do { /* assume called with m >= 258 && n >= 10 */
4418 /* get literal/length code */
4419 GRABBITS(20) /* max bits for literal/length code */
4420 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4421 {
4422 DUMPBITS(t->bits)
4423 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4424 "inflate: * literal '%c'\n" :
4425 "inflate: * literal 0x%02x\n", t->base));
4426 *q++ = (Byte)t->base;
4427 m--;
4428 continue;
4429 }
4430 do {
4431 DUMPBITS(t->bits)
4432 if (e & 16)
4433 {
4434 /* get extra bits for length */
4435 e &= 15;
4436 c = t->base + ((uInt)b & inflate_mask[e]);
4437 DUMPBITS(e)
4438 Tracevv((stderr, "inflate: * length %u\n", c));
4439
4440 /* decode distance base of block to copy */
4441 GRABBITS(15); /* max bits for distance code */
4442 e = (t = td + ((uInt)b & md))->exop;
4443 do {
4444 DUMPBITS(t->bits)
4445 if (e & 16)
4446 {
4447 /* get extra bits to add to distance base */
4448 e &= 15;
4449 GRABBITS(e) /* get extra bits (up to 13) */
4450 d = t->base + ((uInt)b & inflate_mask[e]);
4451 DUMPBITS(e)
4452 Tracevv((stderr, "inflate: * distance %u\n", d));
4453
4454 /* do the copy */
4455 m -= c;
4456 if ((uInt)(q - s->window) >= d) /* offset before dest */
4457 { /* just copy */
4458 r = q - d;
4459 *q++ = *r++; c--; /* minimum count is three, */
4460 *q++ = *r++; c--; /* so unroll loop a little */
4461 }
4462 else /* else offset after destination */
4463 {
4464 e = d - (q - s->window); /* bytes from offset to end */
4465 r = s->end - e; /* pointer to offset */
4466 if (c > e) /* if source crosses, */
4467 {
4468 c -= e; /* copy to end of window */
4469 do {
4470 *q++ = *r++;
4471 } while (--e);
4472 r = s->window; /* copy rest from start of window */
4473 }
4474 }
4475 do { /* copy all or what's left */
4476 *q++ = *r++;
4477 } while (--c);
4478 break;
4479 }
4480 else if ((e & 64) == 0)
4481 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
4482 else
4483 {
4484 z->msg = "invalid distance code";
4485 UNGRAB
4486 UPDATE
4487 return Z_DATA_ERROR;
4488 }
4489 } while (1);
4490 break;
4491 }
4492 if ((e & 64) == 0)
4493 {
4494 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
4495 {
4496 DUMPBITS(t->bits)
4497 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4498 "inflate: * literal '%c'\n" :
4499 "inflate: * literal 0x%02x\n", t->base));
4500 *q++ = (Byte)t->base;
4501 m--;
4502 break;
4503 }
4504 }
4505 else if (e & 32)
4506 {
4507 Tracevv((stderr, "inflate: * end of block\n"));
4508 UNGRAB
4509 UPDATE
4510 return Z_STREAM_END;
4511 }
4512 else
4513 {
4514 z->msg = "invalid literal/length code";
4515 UNGRAB
4516 UPDATE
4517 return Z_DATA_ERROR;
4518 }
4519 } while (1);
4520 } while (m >= 258 && n >= 10);
4521
4522 /* not enough input or output--restore pointers and return */
4523 UNGRAB
4524 UPDATE
4525 return Z_OK;
4526}
4527
4528
4529/*+++++*/
4530/* zutil.c -- target dependent utility functions for the compression library
4531 * Copyright (C) 1995 Jean-loup Gailly.
4532 * For conditions of distribution and use, see copyright notice in zlib.h
4533 */
4534
4535/* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */
4536
4537char *zlib_version = ZLIB_VERSION;
4538
4539char *z_errmsg[] = {
4540"stream end", /* Z_STREAM_END 1 */
4541"", /* Z_OK 0 */
4542"file error", /* Z_ERRNO (-1) */
4543"stream error", /* Z_STREAM_ERROR (-2) */
4544"data error", /* Z_DATA_ERROR (-3) */
4545"insufficient memory", /* Z_MEM_ERROR (-4) */
4546"buffer error", /* Z_BUF_ERROR (-5) */
4547""};
4548
4549
4550/*+++++*/
4551/* adler32.c -- compute the Adler-32 checksum of a data stream
4552 * Copyright (C) 1995 Mark Adler
4553 * For conditions of distribution and use, see copyright notice in zlib.h
4554 */
4555
4556/* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */
4557
4558#define BASE 65521L /* largest prime smaller than 65536 */
4559#define NMAX 5552
4560/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
4561
4562#define DO1(buf) {s1 += *buf++; s2 += s1;}
4563#define DO2(buf) DO1(buf); DO1(buf);
4564#define DO4(buf) DO2(buf); DO2(buf);
4565#define DO8(buf) DO4(buf); DO4(buf);
4566#define DO16(buf) DO8(buf); DO8(buf);
4567
4568/* ========================================================================= */
4569uLong adler32(adler, buf, len)
4570 uLong adler;
4571 Bytef *buf;
4572 uInt len;
4573{
4574 unsigned long s1 = adler & 0xffff;
4575 unsigned long s2 = (adler >> 16) & 0xffff;
4576 int k;
4577
4578 if (buf == Z_NULL) return 1L;
4579
4580 while (len > 0) {
4581 k = len < NMAX ? len : NMAX;
4582 len -= k;
4583 while (k >= 16) {
4584 DO16(buf);
4585 k -= 16;
4586 }
4587 if (k != 0) do {
4588 DO1(buf);
4589 } while (--k);
4590 s1 %= BASE;
4591 s2 %= BASE;
4592 }
4593 return (s2 << 16) | s1;
4594}