define INADDR_NONE if necessary
[rsync/rsync.git] / lib / zlib.c
CommitLineData
861c20b4
PM
1/*
2 * This file is derived from various .h and .c files from the zlib-0.95
3 * distribution by Jean-loup Gailly and Mark Adler, with some additions
4 * by Paul Mackerras to aid in implementing Deflate compression and
5 * decompression for PPP packets. See zlib.h for conditions of
6 * distribution and use.
7 *
8 * Changes that have been made include:
9 * - changed functions not used outside this file to "local"
861c20b4
PM
10 * - added Z_PACKET_FLUSH (see zlib.h for details)
11 * - added inflateIncomp
12 *
13 * $Id$
14 */
15
16
17/*+++++*/
18/* zutil.h -- internal interface and configuration of the compression library
19 * Copyright (C) 1995 Jean-loup Gailly.
20 * For conditions of distribution and use, see copyright notice in zlib.h
21 */
22
23/* WARNING: this file should *not* be used by applications. It is
24 part of the implementation of the compression library and is
25 subject to change. Applications should only use zlib.h.
26 */
27
28/* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */
29
30#define _Z_UTIL_H
31
ef21f8db 32#include "../rsync.h"
861c20b4
PM
33#include "zlib.h"
34
35#ifndef local
36# define local static
37#endif
38/* compile with -Dlocal if your debugger can't find static symbols */
39
40#define FAR
41
42typedef unsigned char uch;
43typedef uch FAR uchf;
44typedef unsigned short ush;
45typedef ush FAR ushf;
46typedef unsigned int ulg;
47
48extern char *z_errmsg[]; /* indexed by 1-zlib_error */
49
50#define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err)
51/* To be used only when the state is known to be valid */
52
53#ifndef NULL
54#define NULL ((void *) 0)
55#endif
56
57 /* common constants */
58
59#define DEFLATED 8
60
61#ifndef DEF_WBITS
62# define DEF_WBITS MAX_WBITS
63#endif
64/* default windowBits for decompression. MAX_WBITS is for compression only */
65
66#if MAX_MEM_LEVEL >= 8
67# define DEF_MEM_LEVEL 8
68#else
69# define DEF_MEM_LEVEL MAX_MEM_LEVEL
70#endif
71/* default memLevel */
72
73#define STORED_BLOCK 0
74#define STATIC_TREES 1
75#define DYN_TREES 2
76/* The three kinds of block type */
77
78#define MIN_MATCH 3
79#define MAX_MATCH 258
80/* The minimum and maximum match lengths */
81
82 /* functions */
ef21f8db
AT
83#define zmemcpy(d, s, n) bcopy((s), (d), (n))
84#define zmemzero bzero
861c20b4
PM
85
86/* Diagnostic functions */
87#ifdef DEBUG_ZLIB
88# include <stdio.h>
89# ifndef verbose
90# define verbose 0
91# endif
92# define Assert(cond,msg) {if(!(cond)) z_error(msg);}
93# define Trace(x) fprintf x
94# define Tracev(x) {if (verbose) fprintf x ;}
95# define Tracevv(x) {if (verbose>1) fprintf x ;}
96# define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
97# define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
98#else
99# define Assert(cond,msg)
100# define Trace(x)
101# define Tracev(x)
102# define Tracevv(x)
103# define Tracec(c,x)
104# define Tracecv(c,x)
105#endif
106
107
108typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len));
109
110/* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
111/* void zcfree OF((voidpf opaque, voidpf ptr)); */
112
113#define ZALLOC(strm, items, size) \
114 (*((strm)->zalloc))((strm)->opaque, (items), (size))
115#define ZFREE(strm, addr, size) \
116 (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size))
117#define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);}
118
119/* deflate.h -- internal compression state
120 * Copyright (C) 1995 Jean-loup Gailly
121 * For conditions of distribution and use, see copyright notice in zlib.h
122 */
123
124/* WARNING: this file should *not* be used by applications. It is
125 part of the implementation of the compression library and is
126 subject to change. Applications should only use zlib.h.
127 */
128
129
130/*+++++*/
131/* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */
132
133/* ===========================================================================
134 * Internal compression state.
135 */
136
137/* Data type */
138#define BINARY 0
139#define ASCII 1
140#define UNKNOWN 2
141
142#define LENGTH_CODES 29
143/* number of length codes, not counting the special END_BLOCK code */
144
145#define LITERALS 256
146/* number of literal bytes 0..255 */
147
148#define L_CODES (LITERALS+1+LENGTH_CODES)
149/* number of Literal or Length codes, including the END_BLOCK code */
150
151#define D_CODES 30
152/* number of distance codes */
153
154#define BL_CODES 19
155/* number of codes used to transfer the bit lengths */
156
157#define HEAP_SIZE (2*L_CODES+1)
158/* maximum heap size */
159
160#define MAX_BITS 15
161/* All codes must not exceed MAX_BITS bits */
162
163#define INIT_STATE 42
164#define BUSY_STATE 113
165#define FLUSH_STATE 124
166#define FINISH_STATE 666
167/* Stream status */
168
169
170/* Data structure describing a single value and its code string. */
171typedef struct ct_data_s {
172 union {
173 ush freq; /* frequency count */
174 ush code; /* bit string */
175 } fc;
176 union {
177 ush dad; /* father node in Huffman tree */
178 ush len; /* length of bit string */
179 } dl;
180} FAR ct_data;
181
182#define Freq fc.freq
183#define Code fc.code
184#define Dad dl.dad
185#define Len dl.len
186
187typedef struct static_tree_desc_s static_tree_desc;
188
189typedef struct tree_desc_s {
190 ct_data *dyn_tree; /* the dynamic tree */
191 int max_code; /* largest code with non zero frequency */
192 static_tree_desc *stat_desc; /* the corresponding static tree */
193} FAR tree_desc;
194
195typedef ush Pos;
196typedef Pos FAR Posf;
197typedef unsigned IPos;
198
199/* A Pos is an index in the character window. We use short instead of int to
200 * save space in the various tables. IPos is used only for parameter passing.
201 */
202
203typedef struct deflate_state {
204 z_stream *strm; /* pointer back to this zlib stream */
205 int status; /* as the name implies */
206 Bytef *pending_buf; /* output still pending */
207 Bytef *pending_out; /* next pending byte to output to the stream */
208 int pending; /* nb of bytes in the pending buffer */
209 uLong adler; /* adler32 of uncompressed data */
210 int noheader; /* suppress zlib header and adler32 */
211 Byte data_type; /* UNKNOWN, BINARY or ASCII */
212 Byte method; /* STORED (for zip only) or DEFLATED */
861c20b4
PM
213
214 /* used by deflate.c: */
215
216 uInt w_size; /* LZ77 window size (32K by default) */
217 uInt w_bits; /* log2(w_size) (8..16) */
218 uInt w_mask; /* w_size - 1 */
219
220 Bytef *window;
221 /* Sliding window. Input bytes are read into the second half of the window,
222 * and move to the first half later to keep a dictionary of at least wSize
223 * bytes. With this organization, matches are limited to a distance of
224 * wSize-MAX_MATCH bytes, but this ensures that IO is always
225 * performed with a length multiple of the block size. Also, it limits
226 * the window size to 64K, which is quite useful on MSDOS.
227 * To do: use the user input buffer as sliding window.
228 */
229
230 ulg window_size;
231 /* Actual size of window: 2*wSize, except when the user input buffer
232 * is directly used as sliding window.
233 */
234
235 Posf *prev;
236 /* Link to older string with same hash index. To limit the size of this
237 * array to 64K, this link is maintained only for the last 32K strings.
238 * An index in this array is thus a window index modulo 32K.
239 */
240
241 Posf *head; /* Heads of the hash chains or NIL. */
242
243 uInt ins_h; /* hash index of string to be inserted */
244 uInt hash_size; /* number of elements in hash table */
245 uInt hash_bits; /* log2(hash_size) */
246 uInt hash_mask; /* hash_size-1 */
247
248 uInt hash_shift;
249 /* Number of bits by which ins_h must be shifted at each input
250 * step. It must be such that after MIN_MATCH steps, the oldest
251 * byte no longer takes part in the hash key, that is:
252 * hash_shift * MIN_MATCH >= hash_bits
253 */
254
5c36219d 255 Long block_start;
861c20b4
PM
256 /* Window position at the beginning of the current output block. Gets
257 * negative when the window is moved backwards.
258 */
259
260 uInt match_length; /* length of best match */
261 IPos prev_match; /* previous match */
262 int match_available; /* set if previous match exists */
263 uInt strstart; /* start of string to insert */
264 uInt match_start; /* start of matching string */
265 uInt lookahead; /* number of valid bytes ahead in window */
266
267 uInt prev_length;
268 /* Length of the best match at previous step. Matches not greater than this
269 * are discarded. This is used in the lazy match evaluation.
270 */
271
272 uInt max_chain_length;
273 /* To speed up deflation, hash chains are never searched beyond this
274 * length. A higher limit improves compression ratio but degrades the
275 * speed.
276 */
277
278 uInt max_lazy_match;
279 /* Attempt to find a better match only when the current match is strictly
280 * smaller than this value. This mechanism is used only for compression
281 * levels >= 4.
282 */
283# define max_insert_length max_lazy_match
284 /* Insert new strings in the hash table only if the match length is not
285 * greater than this length. This saves time but degrades compression.
286 * max_insert_length is used only for compression levels <= 3.
287 */
288
289 int level; /* compression level (1..9) */
290 int strategy; /* favor or force Huffman coding*/
291
292 uInt good_match;
293 /* Use a faster search when the previous match is longer than this */
294
295 int nice_match; /* Stop searching when current match exceeds this */
296
297 /* used by trees.c: */
298 /* Didn't use ct_data typedef below to supress compiler warning */
299 struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */
300 struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
301 struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */
302
303 struct tree_desc_s l_desc; /* desc. for literal tree */
304 struct tree_desc_s d_desc; /* desc. for distance tree */
305 struct tree_desc_s bl_desc; /* desc. for bit length tree */
306
307 ush bl_count[MAX_BITS+1];
308 /* number of codes at each bit length for an optimal tree */
309
310 int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
311 int heap_len; /* number of elements in the heap */
312 int heap_max; /* element of largest frequency */
313 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
314 * The same heap array is used to build all trees.
315 */
316
317 uch depth[2*L_CODES+1];
318 /* Depth of each subtree used as tie breaker for trees of equal frequency
319 */
320
321 uchf *l_buf; /* buffer for literals or lengths */
322
323 uInt lit_bufsize;
324 /* Size of match buffer for literals/lengths. There are 4 reasons for
325 * limiting lit_bufsize to 64K:
326 * - frequencies can be kept in 16 bit counters
327 * - if compression is not successful for the first block, all input
328 * data is still in the window so we can still emit a stored block even
329 * when input comes from standard input. (This can also be done for
330 * all blocks if lit_bufsize is not greater than 32K.)
331 * - if compression is not successful for a file smaller than 64K, we can
332 * even emit a stored file instead of a stored block (saving 5 bytes).
333 * This is applicable only for zip (not gzip or zlib).
334 * - creating new Huffman trees less frequently may not provide fast
335 * adaptation to changes in the input data statistics. (Take for
336 * example a binary file with poorly compressible code followed by
337 * a highly compressible string table.) Smaller buffer sizes give
338 * fast adaptation but have of course the overhead of transmitting
339 * trees more frequently.
340 * - I can't count above 4
341 */
342
343 uInt last_lit; /* running index in l_buf */
344
345 ushf *d_buf;
346 /* Buffer for distances. To simplify the code, d_buf and l_buf have
347 * the same number of elements. To use different lengths, an extra flag
348 * array would be necessary.
349 */
350
351 ulg opt_len; /* bit length of current block with optimal trees */
352 ulg static_len; /* bit length of current block with static trees */
353 ulg compressed_len; /* total bit length of compressed file */
354 uInt matches; /* number of string matches in current block */
355 int last_eob_len; /* bit length of EOB code for last block */
356
357#ifdef DEBUG_ZLIB
358 ulg bits_sent; /* bit length of the compressed data */
359#endif
360
361 ush bi_buf;
362 /* Output buffer. bits are inserted starting at the bottom (least
363 * significant bits).
364 */
365 int bi_valid;
366 /* Number of valid bits in bi_buf. All bits above the last valid bit
367 * are always zero.
368 */
369
370 uInt blocks_in_packet;
371 /* Number of blocks produced since the last time Z_PACKET_FLUSH
372 * was used.
373 */
374
375} FAR deflate_state;
376
377/* Output a byte on the stream.
378 * IN assertion: there is enough room in pending_buf.
379 */
380#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
381
382
383#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
384/* Minimum amount of lookahead, except at the end of the input file.
385 * See deflate.c for comments about the MIN_MATCH+1.
386 */
387
388#define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD)
389/* In order to simplify the code, particularly on 16 bit machines, match
390 * distances are limited to MAX_DIST instead of WSIZE.
391 */
392
393 /* in trees.c */
394local void ct_init OF((deflate_state *s));
395local int ct_tally OF((deflate_state *s, int dist, int lc));
396local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
397 int flush));
398local void ct_align OF((deflate_state *s));
399local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
400 int eof));
401local void ct_stored_type_only OF((deflate_state *s));
402
403
404/*+++++*/
405/* deflate.c -- compress data using the deflation algorithm
406 * Copyright (C) 1995 Jean-loup Gailly.
407 * For conditions of distribution and use, see copyright notice in zlib.h
408 */
409
410/*
411 * ALGORITHM
412 *
413 * The "deflation" process depends on being able to identify portions
414 * of the input text which are identical to earlier input (within a
415 * sliding window trailing behind the input currently being processed).
416 *
417 * The most straightforward technique turns out to be the fastest for
418 * most input files: try all possible matches and select the longest.
419 * The key feature of this algorithm is that insertions into the string
420 * dictionary are very simple and thus fast, and deletions are avoided
421 * completely. Insertions are performed at each input character, whereas
422 * string matches are performed only when the previous match ends. So it
423 * is preferable to spend more time in matches to allow very fast string
424 * insertions and avoid deletions. The matching algorithm for small
425 * strings is inspired from that of Rabin & Karp. A brute force approach
426 * is used to find longer strings when a small match has been found.
427 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
428 * (by Leonid Broukhis).
429 * A previous version of this file used a more sophisticated algorithm
430 * (by Fiala and Greene) which is guaranteed to run in linear amortized
431 * time, but has a larger average cost, uses more memory and is patented.
432 * However the F&G algorithm may be faster for some highly redundant
433 * files if the parameter max_chain_length (described below) is too large.
434 *
435 * ACKNOWLEDGEMENTS
436 *
437 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
438 * I found it in 'freeze' written by Leonid Broukhis.
439 * Thanks to many people for bug reports and testing.
440 *
441 * REFERENCES
442 *
443 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
444 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
445 *
446 * A description of the Rabin and Karp algorithm is given in the book
447 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
448 *
449 * Fiala,E.R., and Greene,D.H.
450 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
451 *
452 */
453
454/* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */
455
ef21f8db 456char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
861c20b4
PM
457/*
458 If you use the zlib library in a product, an acknowledgment is welcome
459 in the documentation of your product. If for some reason you cannot
460 include such an acknowledgment, I would appreciate that you keep this
461 copyright string in the executable of your product.
462 */
463
464#define NIL 0
465/* Tail of hash chains */
466
467#ifndef TOO_FAR
468# define TOO_FAR 4096
469#endif
470/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
471
472#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
473/* Minimum amount of lookahead, except at the end of the input file.
474 * See deflate.c for comments about the MIN_MATCH+1.
475 */
476
477/* Values for max_lazy_match, good_match and max_chain_length, depending on
478 * the desired pack level (0..9). The values given below have been tuned to
479 * exclude worst case performance for pathological files. Better values may be
480 * found for specific files.
481 */
482
483typedef struct config_s {
484 ush good_length; /* reduce lazy search above this match length */
485 ush max_lazy; /* do not perform lazy search above this match length */
486 ush nice_length; /* quit search above this match length */
487 ush max_chain;
488} config;
489
490local config configuration_table[10] = {
491/* good lazy nice chain */
492/* 0 */ {0, 0, 0, 0}, /* store only */
493/* 1 */ {4, 4, 8, 4}, /* maximum speed, no lazy matches */
494/* 2 */ {4, 5, 16, 8},
495/* 3 */ {4, 6, 32, 32},
496
497/* 4 */ {4, 4, 16, 16}, /* lazy matches */
498/* 5 */ {8, 16, 32, 32},
499/* 6 */ {8, 16, 128, 128},
500/* 7 */ {8, 32, 128, 256},
501/* 8 */ {32, 128, 258, 1024},
502/* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
503
504/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
505 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
506 * meaning.
507 */
508
509#define EQUAL 0
510/* result of memcmp for equal strings */
511
512/* ===========================================================================
513 * Prototypes for local functions.
514 */
515
516local void fill_window OF((deflate_state *s));
517local int deflate_fast OF((deflate_state *s, int flush));
518local int deflate_slow OF((deflate_state *s, int flush));
519local void lm_init OF((deflate_state *s));
520local int longest_match OF((deflate_state *s, IPos cur_match));
521local void putShortMSB OF((deflate_state *s, uInt b));
522local void flush_pending OF((z_stream *strm));
ef21f8db 523local int zread_buf OF((z_stream *strm, charf *buf, unsigned size));
861c20b4
PM
524#ifdef ASMV
525 void match_init OF((void)); /* asm code initialization */
526#endif
527
528#ifdef DEBUG_ZLIB
529local void check_match OF((deflate_state *s, IPos start, IPos match,
530 int length));
531#endif
532
533
534/* ===========================================================================
535 * Update a hash value with the given input byte
536 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
537 * input characters, so that a running hash key can be computed from the
538 * previous key instead of complete recalculation each time.
539 */
540#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
541
542
543/* ===========================================================================
544 * Insert string str in the dictionary and set match_head to the previous head
545 * of the hash chain (the most recent string with same hash key). Return
546 * the previous length of the hash chain.
547 * IN assertion: all calls to to INSERT_STRING are made with consecutive
548 * input characters and the first MIN_MATCH bytes of str are valid
549 * (except for the last MIN_MATCH-1 bytes of the input file).
550 */
551#define INSERT_STRING(s, str, match_head) \
552 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
553 s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
554 s->head[s->ins_h] = (str))
555
556/* ===========================================================================
557 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
558 * prev[] will be initialized on the fly.
559 */
560#define CLEAR_HASH(s) \
561 s->head[s->hash_size-1] = NIL; \
562 zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
563
564/* ========================================================================= */
565int deflateInit (strm, level)
566 z_stream *strm;
567 int level;
568{
f8062104 569 return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 0);
861c20b4
PM
570 /* To do: ignore strm->next_in if we use it as window */
571}
572
573/* ========================================================================= */
f8062104 574int deflateInit2 (strm, level, method, windowBits, memLevel, strategy)
861c20b4
PM
575 z_stream *strm;
576 int level;
577 int method;
578 int windowBits;
579 int memLevel;
580 int strategy;
861c20b4
PM
581{
582 deflate_state *s;
583 int noheader = 0;
584
585 if (strm == Z_NULL) return Z_STREAM_ERROR;
586
587 strm->msg = Z_NULL;
588/* if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */
589/* if (strm->zfree == Z_NULL) strm->zfree = zcfree; */
590
591 if (level == Z_DEFAULT_COMPRESSION) level = 6;
592
593 if (windowBits < 0) { /* undocumented feature: suppress zlib header */
594 noheader = 1;
595 windowBits = -windowBits;
596 }
597 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
598 windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
599 return Z_STREAM_ERROR;
600 }
601 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
602 if (s == Z_NULL) return Z_MEM_ERROR;
12384c3a 603 bzero(s, sizeof(*s));
861c20b4
PM
604 strm->state = (struct internal_state FAR *)s;
605 s->strm = strm;
606
607 s->noheader = noheader;
608 s->w_bits = windowBits;
609 s->w_size = 1 << s->w_bits;
610 s->w_mask = s->w_size - 1;
611
612 s->hash_bits = memLevel + 7;
613 s->hash_size = 1 << s->hash_bits;
614 s->hash_mask = s->hash_size - 1;
615 s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
616
617 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
618 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
619 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
620
621 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
622
623 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush));
624
625 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
626 s->pending_buf == Z_NULL) {
627 strm->msg = z_errmsg[1-Z_MEM_ERROR];
628 deflateEnd (strm);
629 return Z_MEM_ERROR;
630 }
631 s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]);
632 s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]);
633 /* We overlay pending_buf and d_buf+l_buf. This works since the average
634 * output size for (length,distance) codes is <= 32 bits (worst case
635 * is 15+15+13=33).
636 */
637
638 s->level = level;
639 s->strategy = strategy;
640 s->method = (Byte)method;
861c20b4
PM
641 s->blocks_in_packet = 0;
642
643 return deflateReset(strm);
644}
645
646/* ========================================================================= */
647int deflateReset (strm)
648 z_stream *strm;
649{
650 deflate_state *s;
651
652 if (strm == Z_NULL || strm->state == Z_NULL ||
653 strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
654
655 strm->total_in = strm->total_out = 0;
656 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
657 strm->data_type = Z_UNKNOWN;
658
659 s = (deflate_state *)strm->state;
660 s->pending = 0;
661 s->pending_out = s->pending_buf;
662
663 if (s->noheader < 0) {
664 s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
665 }
666 s->status = s->noheader ? BUSY_STATE : INIT_STATE;
667 s->adler = 1;
668
669 ct_init(s);
670 lm_init(s);
671
672 return Z_OK;
673}
674
675/* =========================================================================
676 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
677 * IN assertion: the stream state is correct and there is enough room in
678 * pending_buf.
679 */
680local void putShortMSB (s, b)
681 deflate_state *s;
682 uInt b;
683{
684 put_byte(s, (Byte)(b >> 8));
685 put_byte(s, (Byte)(b & 0xff));
686}
687
688/* =========================================================================
689 * Flush as much pending output as possible.
690 */
691local void flush_pending(strm)
692 z_stream *strm;
693{
694 deflate_state *state = (deflate_state *) strm->state;
695 unsigned len = state->pending;
696
697 if (len > strm->avail_out) len = strm->avail_out;
698 if (len == 0) return;
699
700 if (strm->next_out != NULL) {
701 zmemcpy(strm->next_out, state->pending_out, len);
702 strm->next_out += len;
703 }
704 state->pending_out += len;
705 strm->total_out += len;
706 strm->avail_out -= len;
707 state->pending -= len;
708 if (state->pending == 0) {
709 state->pending_out = state->pending_buf;
710 }
711}
712
713/* ========================================================================= */
714int deflate (strm, flush)
715 z_stream *strm;
716 int flush;
717{
718 deflate_state *state = (deflate_state *) strm->state;
719
720 if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
721
722 if (strm->next_in == Z_NULL && strm->avail_in != 0) {
723 ERR_RETURN(strm, Z_STREAM_ERROR);
724 }
725 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
726
727 state->strm = strm; /* just in case */
728
729 /* Write the zlib header */
730 if (state->status == INIT_STATE) {
731
732 uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8;
733 uInt level_flags = (state->level-1) >> 1;
734
735 if (level_flags > 3) level_flags = 3;
736 header |= (level_flags << 6);
737 header += 31 - (header % 31);
738
739 state->status = BUSY_STATE;
740 putShortMSB(state, header);
741 }
742
743 /* Flush as much pending output as possible */
744 if (state->pending != 0) {
745 flush_pending(strm);
746 if (strm->avail_out == 0) return Z_OK;
747 }
748
749 /* If we came back in here to get the last output from
750 * a previous flush, we're done for now.
751 */
752 if (state->status == FLUSH_STATE) {
753 state->status = BUSY_STATE;
754 if (flush != Z_NO_FLUSH && flush != Z_FINISH)
755 return Z_OK;
756 }
757
758 /* User must not provide more input after the first FINISH: */
759 if (state->status == FINISH_STATE && strm->avail_in != 0) {
760 ERR_RETURN(strm, Z_BUF_ERROR);
761 }
762
763 /* Start a new block or continue the current one.
764 */
765 if (strm->avail_in != 0 || state->lookahead != 0 ||
766 (flush == Z_FINISH && state->status != FINISH_STATE)) {
767 int quit;
768
769 if (flush == Z_FINISH) {
770 state->status = FINISH_STATE;
771 }
772 if (state->level <= 3) {
773 quit = deflate_fast(state, flush);
774 } else {
775 quit = deflate_slow(state, flush);
776 }
777 if (quit || strm->avail_out == 0)
778 return Z_OK;
779 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
780 * of deflate should use the same flush parameter to make sure
781 * that the flush is complete. So we don't have to output an
782 * empty block here, this will be done at next call. This also
783 * ensures that for a very small output buffer, we emit at most
784 * one empty block.
785 */
786 }
787
788 /* If a flush was requested, we have a little more to output now. */
789 if (flush != Z_NO_FLUSH && flush != Z_FINISH
790 && state->status != FINISH_STATE) {
791 switch (flush) {
792 case Z_PARTIAL_FLUSH:
793 ct_align(state);
794 break;
795 case Z_PACKET_FLUSH:
796 /* Output just the 3-bit `stored' block type value,
797 but not a zero length. */
798 ct_stored_type_only(state);
799 break;
800 default:
801 ct_stored_block(state, (char*)0, 0L, 0);
802 /* For a full flush, this empty block will be recognized
803 * as a special marker by inflate_sync().
804 */
805 if (flush == Z_FULL_FLUSH) {
806 CLEAR_HASH(state); /* forget history */
807 }
808 }
809 flush_pending(strm);
810 if (strm->avail_out == 0) {
811 /* We'll have to come back to get the rest of the output;
812 * this ensures we don't output a second zero-length stored
813 * block (or whatever).
814 */
815 state->status = FLUSH_STATE;
816 return Z_OK;
817 }
818 }
819
820 Assert(strm->avail_out > 0, "bug2");
821
822 if (flush != Z_FINISH) return Z_OK;
823 if (state->noheader) return Z_STREAM_END;
824
825 /* Write the zlib trailer (adler32) */
826 putShortMSB(state, (uInt)(state->adler >> 16));
827 putShortMSB(state, (uInt)(state->adler & 0xffff));
828 flush_pending(strm);
829 /* If avail_out is zero, the application will call deflate again
830 * to flush the rest.
831 */
832 state->noheader = -1; /* write the trailer only once! */
833 return state->pending != 0 ? Z_OK : Z_STREAM_END;
834}
835
836/* ========================================================================= */
837int deflateEnd (strm)
838 z_stream *strm;
839{
840 deflate_state *state = (deflate_state *) strm->state;
841
842 if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
843
844 TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte));
845 TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos));
846 TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos));
847 TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush));
848
849 ZFREE(strm, state, sizeof(deflate_state));
850 strm->state = Z_NULL;
851
852 return Z_OK;
853}
854
855/* ===========================================================================
856 * Read a new buffer from the current input stream, update the adler32
857 * and total number of bytes read.
858 */
ef21f8db 859local int zread_buf(strm, buf, size)
861c20b4
PM
860 z_stream *strm;
861 charf *buf;
862 unsigned size;
863{
864 unsigned len = strm->avail_in;
865 deflate_state *state = (deflate_state *) strm->state;
866
867 if (len > size) len = size;
868 if (len == 0) return 0;
869
870 strm->avail_in -= len;
871
872 if (!state->noheader) {
873 state->adler = adler32(state->adler, strm->next_in, len);
874 }
875 zmemcpy(buf, strm->next_in, len);
876 strm->next_in += len;
877 strm->total_in += len;
878
879 return (int)len;
880}
881
882/* ===========================================================================
883 * Initialize the "longest match" routines for a new zlib stream
884 */
885local void lm_init (s)
886 deflate_state *s;
887{
888 s->window_size = (ulg)2L*s->w_size;
889
890 CLEAR_HASH(s);
891
892 /* Set the default configuration parameters:
893 */
894 s->max_lazy_match = configuration_table[s->level].max_lazy;
895 s->good_match = configuration_table[s->level].good_length;
896 s->nice_match = configuration_table[s->level].nice_length;
897 s->max_chain_length = configuration_table[s->level].max_chain;
898
899 s->strstart = 0;
900 s->block_start = 0L;
901 s->lookahead = 0;
902 s->match_length = MIN_MATCH-1;
903 s->match_available = 0;
904 s->ins_h = 0;
905#ifdef ASMV
906 match_init(); /* initialize the asm code */
907#endif
908}
909
910/* ===========================================================================
911 * Set match_start to the longest match starting at the given string and
912 * return its length. Matches shorter or equal to prev_length are discarded,
913 * in which case the result is equal to prev_length and match_start is
914 * garbage.
915 * IN assertions: cur_match is the head of the hash chain for the current
916 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
917 */
918#ifndef ASMV
919/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
920 * match.S. The code will be functionally equivalent.
921 */
922local int longest_match(s, cur_match)
923 deflate_state *s;
924 IPos cur_match; /* current match */
925{
926 unsigned chain_length = s->max_chain_length;/* max hash chain length */
927 register Bytef *scan = s->window + s->strstart; /* current string */
928 register Bytef *match; /* matched string */
929 register int len; /* length of current match */
930 int best_len = s->prev_length; /* best match length so far */
931 IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
932 s->strstart - (IPos)MAX_DIST(s) : NIL;
933 /* Stop when cur_match becomes <= limit. To simplify the code,
934 * we prevent matches with the string of window index 0.
935 */
936 Posf *prev = s->prev;
937 uInt wmask = s->w_mask;
938
939#ifdef UNALIGNED_OK
940 /* Compare two bytes at a time. Note: this is not always beneficial.
941 * Try with and without -DUNALIGNED_OK to check.
942 */
943 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
944 register ush scan_start = *(ushf*)scan;
945 register ush scan_end = *(ushf*)(scan+best_len-1);
946#else
947 register Bytef *strend = s->window + s->strstart + MAX_MATCH;
948 register Byte scan_end1 = scan[best_len-1];
949 register Byte scan_end = scan[best_len];
950#endif
951
952 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
953 * It is easy to get rid of this optimization if necessary.
954 */
955 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
956
957 /* Do not waste too much time if we already have a good match: */
958 if (s->prev_length >= s->good_match) {
959 chain_length >>= 2;
960 }
961 Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
962
963 do {
964 Assert(cur_match < s->strstart, "no future");
965 match = s->window + cur_match;
966
967 /* Skip to next match if the match length cannot increase
968 * or if the match length is less than 2:
969 */
970#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
971 /* This code assumes sizeof(unsigned short) == 2. Do not use
972 * UNALIGNED_OK if your compiler uses a different size.
973 */
974 if (*(ushf*)(match+best_len-1) != scan_end ||
975 *(ushf*)match != scan_start) continue;
976
977 /* It is not necessary to compare scan[2] and match[2] since they are
978 * always equal when the other bytes match, given that the hash keys
979 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
980 * strstart+3, +5, ... up to strstart+257. We check for insufficient
981 * lookahead only every 4th comparison; the 128th check will be made
982 * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
983 * necessary to put more guard bytes at the end of the window, or
984 * to check more often for insufficient lookahead.
985 */
986 Assert(scan[2] == match[2], "scan[2]?");
987 scan++, match++;
988 do {
989 } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
990 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
991 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
992 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
993 scan < strend);
994 /* The funny "do {}" generates better code on most compilers */
995
996 /* Here, scan <= window+strstart+257 */
997 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
998 if (*scan == *match) scan++;
999
1000 len = (MAX_MATCH - 1) - (int)(strend-scan);
1001 scan = strend - (MAX_MATCH-1);
1002
1003#else /* UNALIGNED_OK */
1004
1005 if (match[best_len] != scan_end ||
1006 match[best_len-1] != scan_end1 ||
1007 *match != *scan ||
1008 *++match != scan[1]) continue;
1009
1010 /* The check at best_len-1 can be removed because it will be made
1011 * again later. (This heuristic is not always a win.)
1012 * It is not necessary to compare scan[2] and match[2] since they
1013 * are always equal when the other bytes match, given that
1014 * the hash keys are equal and that HASH_BITS >= 8.
1015 */
1016 scan += 2, match++;
1017 Assert(*scan == *match, "match[2]?");
1018
1019 /* We check for insufficient lookahead only every 8th comparison;
1020 * the 256th check will be made at strstart+258.
1021 */
1022 do {
1023 } while (*++scan == *++match && *++scan == *++match &&
1024 *++scan == *++match && *++scan == *++match &&
1025 *++scan == *++match && *++scan == *++match &&
1026 *++scan == *++match && *++scan == *++match &&
1027 scan < strend);
1028
1029 Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1030
1031 len = MAX_MATCH - (int)(strend - scan);
1032 scan = strend - MAX_MATCH;
1033
1034#endif /* UNALIGNED_OK */
1035
1036 if (len > best_len) {
1037 s->match_start = cur_match;
1038 best_len = len;
1039 if (len >= s->nice_match) break;
1040#ifdef UNALIGNED_OK
1041 scan_end = *(ushf*)(scan+best_len-1);
1042#else
1043 scan_end1 = scan[best_len-1];
1044 scan_end = scan[best_len];
1045#endif
1046 }
1047 } while ((cur_match = prev[cur_match & wmask]) > limit
1048 && --chain_length != 0);
1049
1050 return best_len;
1051}
1052#endif /* ASMV */
1053
1054#ifdef DEBUG_ZLIB
1055/* ===========================================================================
1056 * Check that the match at match_start is indeed a match.
1057 */
1058local void check_match(s, start, match, length)
1059 deflate_state *s;
1060 IPos start, match;
1061 int length;
1062{
1063 /* check that the match is indeed a match */
1064 if (memcmp((charf *)s->window + match,
1065 (charf *)s->window + start, length) != EQUAL) {
1066 fprintf(stderr,
1067 " start %u, match %u, length %d\n",
1068 start, match, length);
1069 do { fprintf(stderr, "%c%c", s->window[match++],
1070 s->window[start++]); } while (--length != 0);
1071 z_error("invalid match");
1072 }
1073 if (verbose > 1) {
1074 fprintf(stderr,"\\[%d,%d]", start-match, length);
1075 do { putc(s->window[start++], stderr); } while (--length != 0);
1076 }
1077}
1078#else
1079# define check_match(s, start, match, length)
1080#endif
1081
1082/* ===========================================================================
1083 * Fill the window when the lookahead becomes insufficient.
1084 * Updates strstart and lookahead.
1085 *
1086 * IN assertion: lookahead < MIN_LOOKAHEAD
1087 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1088 * At least one byte has been read, or avail_in == 0; reads are
1089 * performed for at least two bytes (required for the zip translate_eol
1090 * option -- not supported here).
1091 */
1092local void fill_window(s)
1093 deflate_state *s;
1094{
1095 register unsigned n, m;
1096 register Posf *p;
1097 unsigned more; /* Amount of free space at the end of the window. */
1098 uInt wsize = s->w_size;
1099
1100 do {
1101 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1102
1103 /* Deal with !@#$% 64K limit: */
1104 if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1105 more = wsize;
1106 } else if (more == (unsigned)(-1)) {
1107 /* Very unlikely, but possible on 16 bit machine if strstart == 0
1108 * and lookahead == 1 (input done one byte at time)
1109 */
1110 more--;
1111
1112 /* If the window is almost full and there is insufficient lookahead,
1113 * move the upper half to the lower one to make room in the upper half.
1114 */
1115 } else if (s->strstart >= wsize+MAX_DIST(s)) {
1116
1117 /* By the IN assertion, the window is not empty so we can't confuse
1118 * more == 0 with more == 64K on a 16 bit machine.
1119 */
1120 zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1121 (unsigned)wsize);
1122 s->match_start -= wsize;
1123 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1124
5c36219d 1125 s->block_start -= (Long) wsize;
861c20b4
PM
1126
1127 /* Slide the hash table (could be avoided with 32 bit values
1128 at the expense of memory usage):
1129 */
1130 n = s->hash_size;
1131 p = &s->head[n];
1132 do {
1133 m = *--p;
1134 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1135 } while (--n);
1136
1137 n = wsize;
1138 p = &s->prev[n];
1139 do {
1140 m = *--p;
1141 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1142 /* If n is not on any hash chain, prev[n] is garbage but
1143 * its value will never be used.
1144 */
1145 } while (--n);
1146
1147 more += wsize;
1148 }
1149 if (s->strm->avail_in == 0) return;
1150
1151 /* If there was no sliding:
1152 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1153 * more == window_size - lookahead - strstart
1154 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1155 * => more >= window_size - 2*WSIZE + 2
1156 * In the BIG_MEM or MMAP case (not yet supported),
1157 * window_size == input_size + MIN_LOOKAHEAD &&
1158 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1159 * Otherwise, window_size == 2*WSIZE so more >= 2.
1160 * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1161 */
1162 Assert(more >= 2, "more < 2");
1163
ef21f8db 1164 n = zread_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
861c20b4
PM
1165 more);
1166 s->lookahead += n;
1167
1168 /* Initialize the hash value now that we have some input: */
1169 if (s->lookahead >= MIN_MATCH) {
1170 s->ins_h = s->window[s->strstart];
1171 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1172#if MIN_MATCH != 3
1173 Call UPDATE_HASH() MIN_MATCH-3 more times
1174#endif
1175 }
1176 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1177 * but this is not important since only literal bytes will be emitted.
1178 */
1179
1180 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1181}
1182
1183/* ===========================================================================
1184 * Flush the current block, with given end-of-file flag.
1185 * IN assertion: strstart is set to the end of the current match.
1186 */
1187#define FLUSH_BLOCK_ONLY(s, flush) { \
1188 ct_flush_block(s, (s->block_start >= 0L ? \
1189 (charf *)&s->window[(unsigned)s->block_start] : \
5c36219d 1190 (charf *)Z_NULL), (Long)s->strstart - s->block_start, (flush)); \
861c20b4
PM
1191 s->block_start = s->strstart; \
1192 flush_pending(s->strm); \
1193 Tracev((stderr,"[FLUSH]")); \
1194}
1195
1196/* Same but force premature exit if necessary. */
1197#define FLUSH_BLOCK(s, flush) { \
1198 FLUSH_BLOCK_ONLY(s, flush); \
1199 if (s->strm->avail_out == 0) return 1; \
1200}
1201
1202/* ===========================================================================
1203 * Compress as much as possible from the input stream, return true if
1204 * processing was terminated prematurely (no more input or output space).
1205 * This function does not perform lazy evaluationof matches and inserts
1206 * new strings in the dictionary only for unmatched strings or for short
1207 * matches. It is used only for the fast compression options.
1208 */
1209local int deflate_fast(s, flush)
1210 deflate_state *s;
1211 int flush;
1212{
1213 IPos hash_head = NIL; /* head of the hash chain */
1214 int bflush; /* set if current block must be flushed */
1215
1216 s->prev_length = MIN_MATCH-1;
1217
1218 for (;;) {
1219 /* Make sure that we always have enough lookahead, except
1220 * at the end of the input file. We need MAX_MATCH bytes
1221 * for the next match, plus MIN_MATCH bytes to insert the
1222 * string following the next match.
1223 */
1224 if (s->lookahead < MIN_LOOKAHEAD) {
1225 fill_window(s);
1226 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1227
1228 if (s->lookahead == 0) break; /* flush the current block */
1229 }
1230
1231 /* Insert the string window[strstart .. strstart+2] in the
1232 * dictionary, and set hash_head to the head of the hash chain:
1233 */
1234 if (s->lookahead >= MIN_MATCH) {
1235 INSERT_STRING(s, s->strstart, hash_head);
1236 }
1237
1238 /* Find the longest match, discarding those <= prev_length.
1239 * At this point we have always match_length < MIN_MATCH
1240 */
1241 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1242 /* To simplify the code, we prevent matches with the string
1243 * of window index 0 (in particular we have to avoid a match
1244 * of the string with itself at the start of the input file).
1245 */
1246 if (s->strategy != Z_HUFFMAN_ONLY) {
1247 s->match_length = longest_match (s, hash_head);
1248 }
1249 /* longest_match() sets match_start */
1250
1251 if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1252 }
1253 if (s->match_length >= MIN_MATCH) {
1254 check_match(s, s->strstart, s->match_start, s->match_length);
1255
1256 bflush = ct_tally(s, s->strstart - s->match_start,
1257 s->match_length - MIN_MATCH);
1258
1259 s->lookahead -= s->match_length;
1260
1261 /* Insert new strings in the hash table only if the match length
1262 * is not too large. This saves time but degrades compression.
1263 */
1264 if (s->match_length <= s->max_insert_length &&
1265 s->lookahead >= MIN_MATCH) {
1266 s->match_length--; /* string at strstart already in hash table */
1267 do {
1268 s->strstart++;
1269 INSERT_STRING(s, s->strstart, hash_head);
1270 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1271 * always MIN_MATCH bytes ahead.
1272 */
1273 } while (--s->match_length != 0);
1274 s->strstart++;
1275 } else {
1276 s->strstart += s->match_length;
1277 s->match_length = 0;
1278 s->ins_h = s->window[s->strstart];
1279 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1280#if MIN_MATCH != 3
1281 Call UPDATE_HASH() MIN_MATCH-3 more times
1282#endif
1283 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1284 * matter since it will be recomputed at next deflate call.
1285 */
1286 }
1287 } else {
1288 /* No match, output a literal byte */
1289 Tracevv((stderr,"%c", s->window[s->strstart]));
1290 bflush = ct_tally (s, 0, s->window[s->strstart]);
1291 s->lookahead--;
1292 s->strstart++;
1293 }
1294 if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1295 }
1296 FLUSH_BLOCK(s, flush);
1297 return 0; /* normal exit */
1298}
1299
1300/* ===========================================================================
1301 * Same as above, but achieves better compression. We use a lazy
1302 * evaluation for matches: a match is finally adopted only if there is
1303 * no better match at the next window position.
1304 */
1305local int deflate_slow(s, flush)
1306 deflate_state *s;
1307 int flush;
1308{
1309 IPos hash_head = NIL; /* head of hash chain */
1310 int bflush; /* set if current block must be flushed */
1311
1312 /* Process the input block. */
1313 for (;;) {
1314 /* Make sure that we always have enough lookahead, except
1315 * at the end of the input file. We need MAX_MATCH bytes
1316 * for the next match, plus MIN_MATCH bytes to insert the
1317 * string following the next match.
1318 */
1319 if (s->lookahead < MIN_LOOKAHEAD) {
1320 fill_window(s);
1321 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1322
1323 if (s->lookahead == 0) break; /* flush the current block */
1324 }
1325
1326 /* Insert the string window[strstart .. strstart+2] in the
1327 * dictionary, and set hash_head to the head of the hash chain:
1328 */
1329 if (s->lookahead >= MIN_MATCH) {
1330 INSERT_STRING(s, s->strstart, hash_head);
1331 }
1332
1333 if (flush == Z_INSERT_ONLY) {
1334 s->strstart++;
1335 s->lookahead--;
1336 continue;
1337 }
1338
1339 /* Find the longest match, discarding those <= prev_length.
1340 */
1341 s->prev_length = s->match_length, s->prev_match = s->match_start;
1342 s->match_length = MIN_MATCH-1;
1343
1344 if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1345 s->strstart - hash_head <= MAX_DIST(s)) {
1346 /* To simplify the code, we prevent matches with the string
1347 * of window index 0 (in particular we have to avoid a match
1348 * of the string with itself at the start of the input file).
1349 */
1350 if (s->strategy != Z_HUFFMAN_ONLY) {
1351 s->match_length = longest_match (s, hash_head);
1352 }
1353 /* longest_match() sets match_start */
1354 if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1355
1356 if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1357 (s->match_length == MIN_MATCH &&
1358 s->strstart - s->match_start > TOO_FAR))) {
1359
1360 /* If prev_match is also MIN_MATCH, match_start is garbage
1361 * but we will ignore the current match anyway.
1362 */
1363 s->match_length = MIN_MATCH-1;
1364 }
1365 }
1366 /* If there was a match at the previous step and the current
1367 * match is not better, output the previous match:
1368 */
1369 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1370 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1371 /* Do not insert strings in hash table beyond this. */
1372
1373 check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1374
1375 bflush = ct_tally(s, s->strstart -1 - s->prev_match,
1376 s->prev_length - MIN_MATCH);
1377
1378 /* Insert in hash table all strings up to the end of the match.
1379 * strstart-1 and strstart are already inserted. If there is not
1380 * enough lookahead, the last two strings are not inserted in
1381 * the hash table.
1382 */
1383 s->lookahead -= s->prev_length-1;
1384 s->prev_length -= 2;
1385 do {
1386 if (++s->strstart <= max_insert) {
1387 INSERT_STRING(s, s->strstart, hash_head);
1388 }
1389 } while (--s->prev_length != 0);
1390 s->match_available = 0;
1391 s->match_length = MIN_MATCH-1;
1392 s->strstart++;
1393
1394 if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1395
1396 } else if (s->match_available) {
1397 /* If there was no match at the previous position, output a
1398 * single literal. If there was a match but the current match
1399 * is longer, truncate the previous match to a single literal.
1400 */
1401 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1402 if (ct_tally (s, 0, s->window[s->strstart-1])) {
1403 FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH);
1404 }
1405 s->strstart++;
1406 s->lookahead--;
1407 if (s->strm->avail_out == 0) return 1;
1408 } else {
1409 /* There is no previous match to compare with, wait for
1410 * the next step to decide.
1411 */
1412 s->match_available = 1;
1413 s->strstart++;
1414 s->lookahead--;
1415 }
1416 }
1417 if (flush == Z_INSERT_ONLY) {
1418 s->block_start = s->strstart;
1419 return 1;
1420 }
1421 Assert (flush != Z_NO_FLUSH, "no flush?");
1422 if (s->match_available) {
1423 Tracevv((stderr,"%c", s->window[s->strstart-1]));
1424 ct_tally (s, 0, s->window[s->strstart-1]);
1425 s->match_available = 0;
1426 }
1427 FLUSH_BLOCK(s, flush);
1428 return 0;
1429}
1430
1431
1432/*+++++*/
1433/* trees.c -- output deflated data using Huffman coding
1434 * Copyright (C) 1995 Jean-loup Gailly
1435 * For conditions of distribution and use, see copyright notice in zlib.h
1436 */
1437
1438/*
1439 * ALGORITHM
1440 *
1441 * The "deflation" process uses several Huffman trees. The more
1442 * common source values are represented by shorter bit sequences.
1443 *
1444 * Each code tree is stored in a compressed form which is itself
1445 * a Huffman encoding of the lengths of all the code strings (in
1446 * ascending order by source values). The actual code strings are
1447 * reconstructed from the lengths in the inflate process, as described
1448 * in the deflate specification.
1449 *
1450 * REFERENCES
1451 *
1452 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1453 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1454 *
1455 * Storer, James A.
1456 * Data Compression: Methods and Theory, pp. 49-50.
1457 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
1458 *
1459 * Sedgewick, R.
1460 * Algorithms, p290.
1461 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
1462 */
1463
1464/* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */
1465
1466#ifdef DEBUG_ZLIB
1467# include <ctype.h>
1468#endif
1469
1470/* ===========================================================================
1471 * Constants
1472 */
1473
1474#define MAX_BL_BITS 7
1475/* Bit length codes must not exceed MAX_BL_BITS bits */
1476
1477#define END_BLOCK 256
1478/* end of block literal code */
1479
1480#define REP_3_6 16
1481/* repeat previous bit length 3-6 times (2 bits of repeat count) */
1482
1483#define REPZ_3_10 17
1484/* repeat a zero length 3-10 times (3 bits of repeat count) */
1485
1486#define REPZ_11_138 18
1487/* repeat a zero length 11-138 times (7 bits of repeat count) */
1488
1489local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1490 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1491
1492local int extra_dbits[D_CODES] /* extra bits for each distance code */
1493 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1494
1495local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1496 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1497
1498local uch bl_order[BL_CODES]
1499 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1500/* The lengths of the bit length codes are sent in order of decreasing
1501 * probability, to avoid transmitting the lengths for unused bit length codes.
1502 */
1503
1504#define Buf_size (8 * 2*sizeof(char))
1505/* Number of bits used within bi_buf. (bi_buf might be implemented on
1506 * more than 16 bits on some systems.)
1507 */
1508
1509/* ===========================================================================
1510 * Local data. These are initialized only once.
1511 * To do: initialize at compile time to be completely reentrant. ???
1512 */
1513
1514local ct_data static_ltree[L_CODES+2];
1515/* The static literal tree. Since the bit lengths are imposed, there is no
1516 * need for the L_CODES extra codes used during heap construction. However
1517 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
1518 * below).
1519 */
1520
1521local ct_data static_dtree[D_CODES];
1522/* The static distance tree. (Actually a trivial tree since all codes use
1523 * 5 bits.)
1524 */
1525
1526local uch dist_code[512];
1527/* distance codes. The first 256 values correspond to the distances
1528 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1529 * the 15 bit distances.
1530 */
1531
1532local uch length_code[MAX_MATCH-MIN_MATCH+1];
1533/* length code for each normalized match length (0 == MIN_MATCH) */
1534
1535local int base_length[LENGTH_CODES];
1536/* First normalized length for each code (0 = MIN_MATCH) */
1537
1538local int base_dist[D_CODES];
1539/* First normalized distance for each code (0 = distance of 1) */
1540
1541struct static_tree_desc_s {
1542 ct_data *static_tree; /* static tree or NULL */
1543 intf *extra_bits; /* extra bits for each code or NULL */
1544 int extra_base; /* base index for extra_bits */
1545 int elems; /* max number of elements in the tree */
1546 int max_length; /* max bit length for the codes */
1547};
1548
1549local static_tree_desc static_l_desc =
1550{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1551
1552local static_tree_desc static_d_desc =
1553{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
1554
1555local static_tree_desc static_bl_desc =
1556{(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
1557
1558/* ===========================================================================
1559 * Local (static) routines in this file.
1560 */
1561
1562local void ct_static_init OF((void));
1563local void init_block OF((deflate_state *s));
1564local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
1565local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
1566local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
1567local void build_tree OF((deflate_state *s, tree_desc *desc));
1568local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
1569local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
1570local int build_bl_tree OF((deflate_state *s));
1571local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1572 int blcodes));
1573local void compress_block OF((deflate_state *s, ct_data *ltree,
1574 ct_data *dtree));
1575local void set_data_type OF((deflate_state *s));
1576local unsigned bi_reverse OF((unsigned value, int length));
1577local void bi_windup OF((deflate_state *s));
1578local void bi_flush OF((deflate_state *s));
1579local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
1580 int header));
1581
1582#ifndef DEBUG_ZLIB
1583# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1584 /* Send a code of the given tree. c and tree must not have side effects */
1585
1586#else /* DEBUG_ZLIB */
1587# define send_code(s, c, tree) \
1588 { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
1589 send_bits(s, tree[c].Code, tree[c].Len); }
1590#endif
1591
1592#define d_code(dist) \
1593 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1594/* Mapping from a distance to a distance code. dist is the distance - 1 and
1595 * must not have side effects. dist_code[256] and dist_code[257] are never
1596 * used.
1597 */
1598
1599/* ===========================================================================
1600 * Output a short LSB first on the stream.
1601 * IN assertion: there is enough room in pendingBuf.
1602 */
1603#define put_short(s, w) { \
1604 put_byte(s, (uch)((w) & 0xff)); \
1605 put_byte(s, (uch)((ush)(w) >> 8)); \
1606}
1607
1608/* ===========================================================================
1609 * Send a value on a given number of bits.
1610 * IN assertion: length <= 16 and value fits in length bits.
1611 */
1612#ifdef DEBUG_ZLIB
1613local void send_bits OF((deflate_state *s, int value, int length));
1614
1615local void send_bits(s, value, length)
1616 deflate_state *s;
1617 int value; /* value to send */
1618 int length; /* number of bits */
1619{
1620 Tracev((stderr," l %2d v %4x ", length, value));
1621 Assert(length > 0 && length <= 15, "invalid length");
1622 s->bits_sent += (ulg)length;
1623
1624 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
1625 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
1626 * unused bits in value.
1627 */
1628 if (s->bi_valid > (int)Buf_size - length) {
1629 s->bi_buf |= (value << s->bi_valid);
1630 put_short(s, s->bi_buf);
1631 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
1632 s->bi_valid += length - Buf_size;
1633 } else {
1634 s->bi_buf |= value << s->bi_valid;
1635 s->bi_valid += length;
1636 }
1637}
1638#else /* !DEBUG_ZLIB */
1639
1640#define send_bits(s, value, length) \
1641{ int len = length;\
1642 if (s->bi_valid > (int)Buf_size - len) {\
1643 int val = value;\
1644 s->bi_buf |= (val << s->bi_valid);\
1645 put_short(s, s->bi_buf);\
1646 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
1647 s->bi_valid += len - Buf_size;\
1648 } else {\
1649 s->bi_buf |= (value) << s->bi_valid;\
1650 s->bi_valid += len;\
1651 }\
1652}
1653#endif /* DEBUG_ZLIB */
1654
1655
861c20b4
PM
1656/* the arguments must not have side effects */
1657
1658/* ===========================================================================
1659 * Initialize the various 'constant' tables.
1660 * To do: do this at compile time.
1661 */
1662local void ct_static_init()
1663{
1664 int n; /* iterates over tree elements */
1665 int bits; /* bit counter */
1666 int length; /* length value */
1667 int code; /* code value */
1668 int dist; /* distance index */
1669 ush bl_count[MAX_BITS+1];
1670 /* number of codes at each bit length for an optimal tree */
1671
1672 /* Initialize the mapping length (0..255) -> length code (0..28) */
1673 length = 0;
1674 for (code = 0; code < LENGTH_CODES-1; code++) {
1675 base_length[code] = length;
1676 for (n = 0; n < (1<<extra_lbits[code]); n++) {
1677 length_code[length++] = (uch)code;
1678 }
1679 }
1680 Assert (length == 256, "ct_static_init: length != 256");
1681 /* Note that the length 255 (match length 258) can be represented
1682 * in two different ways: code 284 + 5 bits or code 285, so we
1683 * overwrite length_code[255] to use the best encoding:
1684 */
1685 length_code[length-1] = (uch)code;
1686
1687 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1688 dist = 0;
1689 for (code = 0 ; code < 16; code++) {
1690 base_dist[code] = dist;
1691 for (n = 0; n < (1<<extra_dbits[code]); n++) {
1692 dist_code[dist++] = (uch)code;
1693 }
1694 }
1695 Assert (dist == 256, "ct_static_init: dist != 256");
1696 dist >>= 7; /* from now on, all distances are divided by 128 */
1697 for ( ; code < D_CODES; code++) {
1698 base_dist[code] = dist << 7;
1699 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
1700 dist_code[256 + dist++] = (uch)code;
1701 }
1702 }
1703 Assert (dist == 256, "ct_static_init: 256+dist != 512");
1704
1705 /* Construct the codes of the static literal tree */
1706 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
1707 n = 0;
1708 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
1709 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
1710 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
1711 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
1712 /* Codes 286 and 287 do not exist, but we must include them in the
1713 * tree construction to get a canonical Huffman tree (longest code
1714 * all ones)
1715 */
1716 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
1717
1718 /* The static distance tree is trivial: */
1719 for (n = 0; n < D_CODES; n++) {
1720 static_dtree[n].Len = 5;
1721 static_dtree[n].Code = bi_reverse(n, 5);
1722 }
1723}
1724
1725/* ===========================================================================
1726 * Initialize the tree data structures for a new zlib stream.
1727 */
1728local void ct_init(s)
1729 deflate_state *s;
1730{
1731 if (static_dtree[0].Len == 0) {
1732 ct_static_init(); /* To do: at compile time */
1733 }
1734
1735 s->compressed_len = 0L;
1736
1737 s->l_desc.dyn_tree = s->dyn_ltree;
1738 s->l_desc.stat_desc = &static_l_desc;
1739
1740 s->d_desc.dyn_tree = s->dyn_dtree;
1741 s->d_desc.stat_desc = &static_d_desc;
1742
1743 s->bl_desc.dyn_tree = s->bl_tree;
1744 s->bl_desc.stat_desc = &static_bl_desc;
1745
1746 s->bi_buf = 0;
1747 s->bi_valid = 0;
1748 s->last_eob_len = 8; /* enough lookahead for inflate */
1749#ifdef DEBUG_ZLIB
1750 s->bits_sent = 0L;
1751#endif
1752 s->blocks_in_packet = 0;
1753
1754 /* Initialize the first block of the first file: */
1755 init_block(s);
1756}
1757
1758/* ===========================================================================
1759 * Initialize a new block.
1760 */
1761local void init_block(s)
1762 deflate_state *s;
1763{
1764 int n; /* iterates over tree elements */
1765
1766 /* Initialize the trees. */
1767 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
1768 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
1769 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
1770
1771 s->dyn_ltree[END_BLOCK].Freq = 1;
1772 s->opt_len = s->static_len = 0L;
1773 s->last_lit = s->matches = 0;
1774}
1775
1776#define SMALLEST 1
1777/* Index within the heap array of least frequent node in the Huffman tree */
1778
1779
1780/* ===========================================================================
1781 * Remove the smallest element from the heap and recreate the heap with
1782 * one less element. Updates heap and heap_len.
1783 */
1784#define pqremove(s, tree, top) \
1785{\
1786 top = s->heap[SMALLEST]; \
1787 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
1788 pqdownheap(s, tree, SMALLEST); \
1789}
1790
1791/* ===========================================================================
1792 * Compares to subtrees, using the tree depth as tie breaker when
1793 * the subtrees have equal frequency. This minimizes the worst case length.
1794 */
1795#define smaller(tree, n, m, depth) \
1796 (tree[n].Freq < tree[m].Freq || \
1797 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1798
1799/* ===========================================================================
1800 * Restore the heap property by moving down the tree starting at node k,
1801 * exchanging a node with the smallest of its two sons if necessary, stopping
1802 * when the heap property is re-established (each father smaller than its
1803 * two sons).
1804 */
1805local void pqdownheap(s, tree, k)
1806 deflate_state *s;
1807 ct_data *tree; /* the tree to restore */
1808 int k; /* node to move down */
1809{
1810 int v = s->heap[k];
1811 int j = k << 1; /* left son of k */
1812 while (j <= s->heap_len) {
1813 /* Set j to the smallest of the two sons: */
1814 if (j < s->heap_len &&
1815 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
1816 j++;
1817 }
1818 /* Exit if v is smaller than both sons */
1819 if (smaller(tree, v, s->heap[j], s->depth)) break;
1820
1821 /* Exchange v with the smallest son */
1822 s->heap[k] = s->heap[j]; k = j;
1823
1824 /* And continue down the tree, setting j to the left son of k */
1825 j <<= 1;
1826 }
1827 s->heap[k] = v;
1828}
1829
1830/* ===========================================================================
1831 * Compute the optimal bit lengths for a tree and update the total bit length
1832 * for the current block.
1833 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1834 * above are the tree nodes sorted by increasing frequency.
1835 * OUT assertions: the field len is set to the optimal bit length, the
1836 * array bl_count contains the frequencies for each bit length.
1837 * The length opt_len is updated; static_len is also updated if stree is
1838 * not null.
1839 */
1840local void gen_bitlen(s, desc)
1841 deflate_state *s;
1842 tree_desc *desc; /* the tree descriptor */
1843{
1844 ct_data *tree = desc->dyn_tree;
1845 int max_code = desc->max_code;
1846 ct_data *stree = desc->stat_desc->static_tree;
1847 intf *extra = desc->stat_desc->extra_bits;
1848 int base = desc->stat_desc->extra_base;
1849 int max_length = desc->stat_desc->max_length;
1850 int h; /* heap index */
1851 int n, m; /* iterate over the tree elements */
1852 int bits; /* bit length */
1853 int xbits; /* extra bits */
1854 ush f; /* frequency */
1855 int overflow = 0; /* number of elements with bit length too large */
1856
1857 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
1858
1859 /* In a first pass, compute the optimal bit lengths (which may
1860 * overflow in the case of the bit length tree).
1861 */
1862 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
1863
1864 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
1865 n = s->heap[h];
1866 bits = tree[tree[n].Dad].Len + 1;
1867 if (bits > max_length) bits = max_length, overflow++;
1868 tree[n].Len = (ush)bits;
1869 /* We overwrite tree[n].Dad which is no longer needed */
1870
1871 if (n > max_code) continue; /* not a leaf node */
1872
1873 s->bl_count[bits]++;
1874 xbits = 0;
1875 if (n >= base) xbits = extra[n-base];
1876 f = tree[n].Freq;
1877 s->opt_len += (ulg)f * (bits + xbits);
1878 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
1879 }
1880 if (overflow == 0) return;
1881
1882 Trace((stderr,"\nbit length overflow\n"));
1883 /* This happens for example on obj2 and pic of the Calgary corpus */
1884
1885 /* Find the first bit length which could increase: */
1886 do {
1887 bits = max_length-1;
1888 while (s->bl_count[bits] == 0) bits--;
1889 s->bl_count[bits]--; /* move one leaf down the tree */
1890 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
1891 s->bl_count[max_length]--;
1892 /* The brother of the overflow item also moves one step up,
1893 * but this does not affect bl_count[max_length]
1894 */
1895 overflow -= 2;
1896 } while (overflow > 0);
1897
1898 /* Now recompute all bit lengths, scanning in increasing frequency.
1899 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1900 * lengths instead of fixing only the wrong ones. This idea is taken
1901 * from 'ar' written by Haruhiko Okumura.)
1902 */
1903 for (bits = max_length; bits != 0; bits--) {
1904 n = s->bl_count[bits];
1905 while (n != 0) {
1906 m = s->heap[--h];
1907 if (m > max_code) continue;
1908 if (tree[m].Len != (unsigned) bits) {
1909 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
5c36219d
AT
1910 s->opt_len += ((Long)bits - (Long)tree[m].Len)
1911 *(Long)tree[m].Freq;
861c20b4
PM
1912 tree[m].Len = (ush)bits;
1913 }
1914 n--;
1915 }
1916 }
1917}
1918
1919/* ===========================================================================
1920 * Generate the codes for a given tree and bit counts (which need not be
1921 * optimal).
1922 * IN assertion: the array bl_count contains the bit length statistics for
1923 * the given tree and the field len is set for all tree elements.
1924 * OUT assertion: the field code is set for all tree elements of non
1925 * zero code length.
1926 */
1927local void gen_codes (tree, max_code, bl_count)
1928 ct_data *tree; /* the tree to decorate */
1929 int max_code; /* largest code with non zero frequency */
1930 ushf *bl_count; /* number of codes at each bit length */
1931{
1932 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
1933 ush code = 0; /* running code value */
1934 int bits; /* bit index */
1935 int n; /* code index */
1936
1937 /* The distribution counts are first used to generate the code values
1938 * without bit reversal.
1939 */
1940 for (bits = 1; bits <= MAX_BITS; bits++) {
1941 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
1942 }
1943 /* Check that the bit counts in bl_count are consistent. The last code
1944 * must be all ones.
1945 */
1946 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
1947 "inconsistent bit counts");
1948 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
1949
1950 for (n = 0; n <= max_code; n++) {
1951 int len = tree[n].Len;
1952 if (len == 0) continue;
1953 /* Now reverse the bits */
1954 tree[n].Code = bi_reverse(next_code[len]++, len);
1955
1956 Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
1957 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
1958 }
1959}
1960
1961/* ===========================================================================
1962 * Construct one Huffman tree and assigns the code bit strings and lengths.
1963 * Update the total bit length for the current block.
1964 * IN assertion: the field freq is set for all tree elements.
1965 * OUT assertions: the fields len and code are set to the optimal bit length
1966 * and corresponding code. The length opt_len is updated; static_len is
1967 * also updated if stree is not null. The field max_code is set.
1968 */
1969local void build_tree(s, desc)
1970 deflate_state *s;
1971 tree_desc *desc; /* the tree descriptor */
1972{
1973 ct_data *tree = desc->dyn_tree;
1974 ct_data *stree = desc->stat_desc->static_tree;
1975 int elems = desc->stat_desc->elems;
1976 int n, m; /* iterate over heap elements */
1977 int max_code = -1; /* largest code with non zero frequency */
1978 int node; /* new node being created */
1979
1980 /* Construct the initial heap, with least frequent element in
1981 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1982 * heap[0] is not used.
1983 */
1984 s->heap_len = 0, s->heap_max = HEAP_SIZE;
1985
1986 for (n = 0; n < elems; n++) {
1987 if (tree[n].Freq != 0) {
1988 s->heap[++(s->heap_len)] = max_code = n;
1989 s->depth[n] = 0;
1990 } else {
1991 tree[n].Len = 0;
1992 }
1993 }
1994
1995 /* The pkzip format requires that at least one distance code exists,
1996 * and that at least one bit should be sent even if there is only one
1997 * possible code. So to avoid special checks later on we force at least
1998 * two codes of non zero frequency.
1999 */
2000 while (s->heap_len < 2) {
2001 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2002 tree[node].Freq = 1;
2003 s->depth[node] = 0;
2004 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2005 /* node is 0 or 1 so it does not have extra bits */
2006 }
2007 desc->max_code = max_code;
2008
2009 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2010 * establish sub-heaps of increasing lengths:
2011 */
2012 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2013
2014 /* Construct the Huffman tree by repeatedly combining the least two
2015 * frequent nodes.
2016 */
2017 node = elems; /* next internal node of the tree */
2018 do {
2019 pqremove(s, tree, n); /* n = node of least frequency */
2020 m = s->heap[SMALLEST]; /* m = node of next least frequency */
2021
2022 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2023 s->heap[--(s->heap_max)] = m;
2024
2025 /* Create a new node father of n and m */
2026 tree[node].Freq = tree[n].Freq + tree[m].Freq;
2027 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2028 tree[n].Dad = tree[m].Dad = (ush)node;
2029#ifdef DUMP_BL_TREE
2030 if (tree == s->bl_tree) {
2031 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2032 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2033 }
2034#endif
2035 /* and insert the new node in the heap */
2036 s->heap[SMALLEST] = node++;
2037 pqdownheap(s, tree, SMALLEST);
2038
2039 } while (s->heap_len >= 2);
2040
2041 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2042
2043 /* At this point, the fields freq and dad are set. We can now
2044 * generate the bit lengths.
2045 */
2046 gen_bitlen(s, (tree_desc *)desc);
2047
2048 /* The field len is now set, we can generate the bit codes */
2049 gen_codes ((ct_data *)tree, max_code, s->bl_count);
2050}
2051
2052/* ===========================================================================
2053 * Scan a literal or distance tree to determine the frequencies of the codes
2054 * in the bit length tree.
2055 */
2056local void scan_tree (s, tree, max_code)
2057 deflate_state *s;
2058 ct_data *tree; /* the tree to be scanned */
2059 int max_code; /* and its largest code of non zero frequency */
2060{
2061 int n; /* iterates over all tree elements */
2062 int prevlen = -1; /* last emitted length */
2063 int curlen; /* length of current code */
2064 int nextlen = tree[0].Len; /* length of next code */
2065 int count = 0; /* repeat count of the current code */
2066 int max_count = 7; /* max repeat count */
2067 int min_count = 4; /* min repeat count */
2068
2069 if (nextlen == 0) max_count = 138, min_count = 3;
2070 tree[max_code+1].Len = (ush)0xffff; /* guard */
2071
2072 for (n = 0; n <= max_code; n++) {
2073 curlen = nextlen; nextlen = tree[n+1].Len;
2074 if (++count < max_count && curlen == nextlen) {
2075 continue;
2076 } else if (count < min_count) {
2077 s->bl_tree[curlen].Freq += count;
2078 } else if (curlen != 0) {
2079 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2080 s->bl_tree[REP_3_6].Freq++;
2081 } else if (count <= 10) {
2082 s->bl_tree[REPZ_3_10].Freq++;
2083 } else {
2084 s->bl_tree[REPZ_11_138].Freq++;
2085 }
2086 count = 0; prevlen = curlen;
2087 if (nextlen == 0) {
2088 max_count = 138, min_count = 3;
2089 } else if (curlen == nextlen) {
2090 max_count = 6, min_count = 3;
2091 } else {
2092 max_count = 7, min_count = 4;
2093 }
2094 }
2095}
2096
2097/* ===========================================================================
2098 * Send a literal or distance tree in compressed form, using the codes in
2099 * bl_tree.
2100 */
2101local void send_tree (s, tree, max_code)
2102 deflate_state *s;
2103 ct_data *tree; /* the tree to be scanned */
2104 int max_code; /* and its largest code of non zero frequency */
2105{
2106 int n; /* iterates over all tree elements */
2107 int prevlen = -1; /* last emitted length */
2108 int curlen; /* length of current code */
2109 int nextlen = tree[0].Len; /* length of next code */
2110 int count = 0; /* repeat count of the current code */
2111 int max_count = 7; /* max repeat count */
2112 int min_count = 4; /* min repeat count */
2113
2114 /* tree[max_code+1].Len = -1; */ /* guard already set */
2115 if (nextlen == 0) max_count = 138, min_count = 3;
2116
2117 for (n = 0; n <= max_code; n++) {
2118 curlen = nextlen; nextlen = tree[n+1].Len;
2119 if (++count < max_count && curlen == nextlen) {
2120 continue;
2121 } else if (count < min_count) {
2122 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2123
2124 } else if (curlen != 0) {
2125 if (curlen != prevlen) {
2126 send_code(s, curlen, s->bl_tree); count--;
2127 }
2128 Assert(count >= 3 && count <= 6, " 3_6?");
2129 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2130
2131 } else if (count <= 10) {
2132 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2133
2134 } else {
2135 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2136 }
2137 count = 0; prevlen = curlen;
2138 if (nextlen == 0) {
2139 max_count = 138, min_count = 3;
2140 } else if (curlen == nextlen) {
2141 max_count = 6, min_count = 3;
2142 } else {
2143 max_count = 7, min_count = 4;
2144 }
2145 }
2146}
2147
2148/* ===========================================================================
2149 * Construct the Huffman tree for the bit lengths and return the index in
2150 * bl_order of the last bit length code to send.
2151 */
2152local int build_bl_tree(s)
2153 deflate_state *s;
2154{
2155 int max_blindex; /* index of last bit length code of non zero freq */
2156
2157 /* Determine the bit length frequencies for literal and distance trees */
2158 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2159 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2160
2161 /* Build the bit length tree: */
2162 build_tree(s, (tree_desc *)(&(s->bl_desc)));
2163 /* opt_len now includes the length of the tree representations, except
2164 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2165 */
2166
2167 /* Determine the number of bit length codes to send. The pkzip format
2168 * requires that at least 4 bit length codes be sent. (appnote.txt says
2169 * 3 but the actual value used is 4.)
2170 */
2171 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2172 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2173 }
2174 /* Update opt_len to include the bit length tree and counts */
2175 s->opt_len += 3*(max_blindex+1) + 5+5+4;
2176 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2177 s->opt_len, s->static_len));
2178
2179 return max_blindex;
2180}
2181
2182/* ===========================================================================
2183 * Send the header for a block using dynamic Huffman trees: the counts, the
2184 * lengths of the bit length codes, the literal tree and the distance tree.
2185 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2186 */
2187local void send_all_trees(s, lcodes, dcodes, blcodes)
2188 deflate_state *s;
2189 int lcodes, dcodes, blcodes; /* number of codes for each tree */
2190{
2191 int rank; /* index in bl_order */
2192
2193 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2194 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2195 "too many codes");
2196 Tracev((stderr, "\nbl counts: "));
2197 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2198 send_bits(s, dcodes-1, 5);
2199 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
2200 for (rank = 0; rank < blcodes; rank++) {
2201 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2202 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2203 }
2204 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2205
2206 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2207 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2208
2209 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2210 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2211}
2212
2213/* ===========================================================================
2214 * Send a stored block
2215 */
2216local void ct_stored_block(s, buf, stored_len, eof)
2217 deflate_state *s;
2218 charf *buf; /* input block */
2219 ulg stored_len; /* length of input block */
2220 int eof; /* true if this is the last block for a file */
2221{
2222 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
2223 s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
2224 s->compressed_len += (stored_len + 4) << 3;
2225
2226 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2227}
2228
2229/* Send just the `stored block' type code without any length bytes or data.
2230 */
2231local void ct_stored_type_only(s)
2232 deflate_state *s;
2233{
2234 send_bits(s, (STORED_BLOCK << 1), 3);
2235 bi_windup(s);
2236 s->compressed_len = (s->compressed_len + 3) & ~7L;
2237}
2238
2239
2240/* ===========================================================================
2241 * Send one empty static block to give enough lookahead for inflate.
2242 * This takes 10 bits, of which 7 may remain in the bit buffer.
2243 * The current inflate code requires 9 bits of lookahead. If the EOB
2244 * code for the previous block was coded on 5 bits or less, inflate
2245 * may have only 5+3 bits of lookahead to decode this EOB.
2246 * (There are no problems if the previous block is stored or fixed.)
2247 */
2248local void ct_align(s)
2249 deflate_state *s;
2250{
2251 send_bits(s, STATIC_TREES<<1, 3);
2252 send_code(s, END_BLOCK, static_ltree);
2253 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2254 bi_flush(s);
2255 /* Of the 10 bits for the empty block, we have already sent
2256 * (10 - bi_valid) bits. The lookahead for the EOB of the previous
2257 * block was thus its length plus what we have just sent.
2258 */
2259 if (s->last_eob_len + 10 - s->bi_valid < 9) {
2260 send_bits(s, STATIC_TREES<<1, 3);
2261 send_code(s, END_BLOCK, static_ltree);
2262 s->compressed_len += 10L;
2263 bi_flush(s);
2264 }
2265 s->last_eob_len = 7;
2266}
2267
2268/* ===========================================================================
2269 * Determine the best encoding for the current block: dynamic trees, static
2270 * trees or store, and output the encoded block to the zip file. This function
2271 * returns the total compressed length for the file so far.
2272 */
2273local ulg ct_flush_block(s, buf, stored_len, flush)
2274 deflate_state *s;
2275 charf *buf; /* input block, or NULL if too old */
2276 ulg stored_len; /* length of input block */
2277 int flush; /* Z_FINISH if this is the last block for a file */
2278{
2279 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2280 int max_blindex; /* index of last bit length code of non zero freq */
2281 int eof = flush == Z_FINISH;
2282
2283 ++s->blocks_in_packet;
2284
2285 /* Check if the file is ascii or binary */
2286 if (s->data_type == UNKNOWN) set_data_type(s);
2287
2288 /* Construct the literal and distance trees */
2289 build_tree(s, (tree_desc *)(&(s->l_desc)));
2290 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2291 s->static_len));
2292
2293 build_tree(s, (tree_desc *)(&(s->d_desc)));
2294 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2295 s->static_len));
2296 /* At this point, opt_len and static_len are the total bit lengths of
2297 * the compressed block data, excluding the tree representations.
2298 */
2299
2300 /* Build the bit length tree for the above two trees, and get the index
2301 * in bl_order of the last bit length code to send.
2302 */
2303 max_blindex = build_bl_tree(s);
2304
2305 /* Determine the best encoding. Compute first the block length in bytes */
2306 opt_lenb = (s->opt_len+3+7)>>3;
2307 static_lenb = (s->static_len+3+7)>>3;
2308
2309 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2310 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2311 s->last_lit));
2312
2313 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2314
2315 /* If compression failed and this is the first and last block,
2316 * and if the .zip file can be seeked (to rewrite the local header),
2317 * the whole file is transformed into a stored file:
2318 */
2319#ifdef STORED_FILE_OK
2320# ifdef FORCE_STORED_FILE
2321 if (eof && compressed_len == 0L) /* force stored file */
2322# else
2323 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable())
2324# endif
2325 {
2326 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2327 if (buf == (charf*)0) error ("block vanished");
2328
2329 copy_block(buf, (unsigned)stored_len, 0); /* without header */
2330 s->compressed_len = stored_len << 3;
2331 s->method = STORED;
2332 } else
2333#endif /* STORED_FILE_OK */
2334
861c20b4
PM
2335#ifdef FORCE_STORED
2336 if (buf != (char*)0) /* force stored block */
2337#else
2338 if (stored_len+4 <= opt_lenb && buf != (char*)0)
2339 /* 4: two words for the lengths */
2340#endif
2341 {
2342 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2343 * Otherwise we can't have processed more than WSIZE input bytes since
2344 * the last block flush, because compression would have been
2345 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2346 * transform a block into a stored block.
2347 */
2348 ct_stored_block(s, buf, stored_len, eof);
2349 } else
2350
2351#ifdef FORCE_STATIC
2352 if (static_lenb >= 0) /* force static trees */
2353#else
2354 if (static_lenb == opt_lenb)
2355#endif
2356 {
2357 send_bits(s, (STATIC_TREES<<1)+eof, 3);
2358 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2359 s->compressed_len += 3 + s->static_len;
2360 } else {
2361 send_bits(s, (DYN_TREES<<1)+eof, 3);
2362 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2363 max_blindex+1);
2364 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2365 s->compressed_len += 3 + s->opt_len;
2366 }
2367 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2368 init_block(s);
2369
2370 if (eof) {
2371 bi_windup(s);
2372 s->compressed_len += 7; /* align on byte boundary */
2373 }
2374 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2375 s->compressed_len-7*eof));
2376
2377 return s->compressed_len >> 3;
2378}
2379
2380/* ===========================================================================
2381 * Save the match info and tally the frequency counts. Return true if
2382 * the current block must be flushed.
2383 */
2384local int ct_tally (s, dist, lc)
2385 deflate_state *s;
2386 int dist; /* distance of matched string */
2387 int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
2388{
2389 s->d_buf[s->last_lit] = (ush)dist;
2390 s->l_buf[s->last_lit++] = (uch)lc;
2391 if (dist == 0) {
2392 /* lc is the unmatched char */
2393 s->dyn_ltree[lc].Freq++;
2394 } else {
2395 s->matches++;
2396 /* Here, lc is the match length - MIN_MATCH */
2397 dist--; /* dist = match distance - 1 */
2398 Assert((ush)dist < (ush)MAX_DIST(s) &&
2399 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2400 (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
2401
2402 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2403 s->dyn_dtree[d_code(dist)].Freq++;
2404 }
2405
2406 /* Try to guess if it is profitable to stop the current block here */
2407 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2408 /* Compute an upper bound for the compressed length */
2409 ulg out_length = (ulg)s->last_lit*8L;
2410 ulg in_length = (ulg)s->strstart - s->block_start;
2411 int dcode;
2412 for (dcode = 0; dcode < D_CODES; dcode++) {
2413 out_length += (ulg)s->dyn_dtree[dcode].Freq *
2414 (5L+extra_dbits[dcode]);
2415 }
2416 out_length >>= 3;
2417 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2418 s->last_lit, in_length, out_length,
2419 100L - out_length*100L/in_length));
2420 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2421 }
2422 return (s->last_lit == s->lit_bufsize-1);
2423 /* We avoid equality with lit_bufsize because of wraparound at 64K
2424 * on 16 bit machines and because stored blocks are restricted to
2425 * 64K-1 bytes.
2426 */
2427}
2428
2429/* ===========================================================================
2430 * Send the block data compressed using the given Huffman trees
2431 */
2432local void compress_block(s, ltree, dtree)
2433 deflate_state *s;
2434 ct_data *ltree; /* literal tree */
2435 ct_data *dtree; /* distance tree */
2436{
2437 unsigned dist; /* distance of matched string */
2438 int lc; /* match length or unmatched char (if dist == 0) */
2439 unsigned lx = 0; /* running index in l_buf */
2440 unsigned code; /* the code to send */
2441 int extra; /* number of extra bits to send */
2442
2443 if (s->last_lit != 0) do {
2444 dist = s->d_buf[lx];
2445 lc = s->l_buf[lx++];
2446 if (dist == 0) {
2447 send_code(s, lc, ltree); /* send a literal byte */
2448 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2449 } else {
2450 /* Here, lc is the match length - MIN_MATCH */
2451 code = length_code[lc];
2452 send_code(s, code+LITERALS+1, ltree); /* send the length code */
2453 extra = extra_lbits[code];
2454 if (extra != 0) {
2455 lc -= base_length[code];
2456 send_bits(s, lc, extra); /* send the extra length bits */
2457 }
2458 dist--; /* dist is now the match distance - 1 */
2459 code = d_code(dist);
2460 Assert (code < D_CODES, "bad d_code");
2461
2462 send_code(s, code, dtree); /* send the distance code */
2463 extra = extra_dbits[code];
2464 if (extra != 0) {
2465 dist -= base_dist[code];
2466 send_bits(s, dist, extra); /* send the extra distance bits */
2467 }
2468 } /* literal or match pair ? */
2469
2470 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2471 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2472
2473 } while (lx < s->last_lit);
2474
2475 send_code(s, END_BLOCK, ltree);
2476 s->last_eob_len = ltree[END_BLOCK].Len;
2477}
2478
2479/* ===========================================================================
2480 * Set the data type to ASCII or BINARY, using a crude approximation:
2481 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2482 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2483 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2484 */
2485local void set_data_type(s)
2486 deflate_state *s;
2487{
2488 int n = 0;
2489 unsigned ascii_freq = 0;
2490 unsigned bin_freq = 0;
2491 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
2492 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
2493 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2494 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
2495}
2496
2497/* ===========================================================================
2498 * Reverse the first len bits of a code, using straightforward code (a faster
2499 * method would use a table)
2500 * IN assertion: 1 <= len <= 15
2501 */
2502local unsigned bi_reverse(code, len)
2503 unsigned code; /* the value to invert */
2504 int len; /* its bit length */
2505{
2506 register unsigned res = 0;
2507 do {
2508 res |= code & 1;
2509 code >>= 1, res <<= 1;
2510 } while (--len > 0);
2511 return res >> 1;
2512}
2513
2514/* ===========================================================================
2515 * Flush the bit buffer, keeping at most 7 bits in it.
2516 */
2517local void bi_flush(s)
2518 deflate_state *s;
2519{
2520 if (s->bi_valid == 16) {
2521 put_short(s, s->bi_buf);
2522 s->bi_buf = 0;
2523 s->bi_valid = 0;
2524 } else if (s->bi_valid >= 8) {
2525 put_byte(s, (Byte)s->bi_buf);
2526 s->bi_buf >>= 8;
2527 s->bi_valid -= 8;
2528 }
2529}
2530
2531/* ===========================================================================
2532 * Flush the bit buffer and align the output on a byte boundary
2533 */
2534local void bi_windup(s)
2535 deflate_state *s;
2536{
2537 if (s->bi_valid > 8) {
2538 put_short(s, s->bi_buf);
2539 } else if (s->bi_valid > 0) {
2540 put_byte(s, (Byte)s->bi_buf);
2541 }
2542 s->bi_buf = 0;
2543 s->bi_valid = 0;
2544#ifdef DEBUG_ZLIB
2545 s->bits_sent = (s->bits_sent+7) & ~7;
2546#endif
2547}
2548
2549/* ===========================================================================
2550 * Copy a stored block, storing first the length and its
2551 * one's complement if requested.
2552 */
2553local void copy_block(s, buf, len, header)
2554 deflate_state *s;
2555 charf *buf; /* the input data */
2556 unsigned len; /* its length */
2557 int header; /* true if block header must be written */
2558{
2559 bi_windup(s); /* align on byte boundary */
2560 s->last_eob_len = 8; /* enough lookahead for inflate */
2561
2562 if (header) {
2563 put_short(s, (ush)len);
2564 put_short(s, (ush)~len);
2565#ifdef DEBUG_ZLIB
2566 s->bits_sent += 2*16;
2567#endif
2568 }
2569#ifdef DEBUG_ZLIB
2570 s->bits_sent += (ulg)len<<3;
2571#endif
2572 while (len--) {
2573 put_byte(s, *buf++);
2574 }
2575}
2576
2577
2578/*+++++*/
2579/* infblock.h -- header to use infblock.c
2580 * Copyright (C) 1995 Mark Adler
2581 * For conditions of distribution and use, see copyright notice in zlib.h
2582 */
2583
2584/* WARNING: this file should *not* be used by applications. It is
2585 part of the implementation of the compression library and is
2586 subject to change. Applications should only use zlib.h.
2587 */
2588
2589struct inflate_blocks_state;
2590typedef struct inflate_blocks_state FAR inflate_blocks_statef;
2591
2592local inflate_blocks_statef * inflate_blocks_new OF((
2593 z_stream *z,
2594 check_func c, /* check function */
2595 uInt w)); /* window size */
2596
2597local int inflate_blocks OF((
2598 inflate_blocks_statef *,
2599 z_stream *,
2600 int)); /* initial return code */
2601
2602local void inflate_blocks_reset OF((
2603 inflate_blocks_statef *,
2604 z_stream *,
2605 uLongf *)); /* check value on output */
2606
2607local int inflate_blocks_free OF((
2608 inflate_blocks_statef *,
2609 z_stream *,
2610 uLongf *)); /* check value on output */
2611
2612local int inflate_addhistory OF((
2613 inflate_blocks_statef *,
2614 z_stream *));
2615
2616local int inflate_packet_flush OF((
2617 inflate_blocks_statef *));
2618
2619/*+++++*/
2620/* inftrees.h -- header to use inftrees.c
2621 * Copyright (C) 1995 Mark Adler
2622 * For conditions of distribution and use, see copyright notice in zlib.h
2623 */
2624
2625/* WARNING: this file should *not* be used by applications. It is
2626 part of the implementation of the compression library and is
2627 subject to change. Applications should only use zlib.h.
2628 */
2629
2630/* Huffman code lookup table entry--this entry is four bytes for machines
2631 that have 16-bit pointers (e.g. PC's in the small or medium model). */
2632
2633typedef struct inflate_huft_s FAR inflate_huft;
2634
2635struct inflate_huft_s {
2636 union {
2637 struct {
2638 Byte Exop; /* number of extra bits or operation */
2639 Byte Bits; /* number of bits in this code or subcode */
2640 } what;
2641 uInt Nalloc; /* number of these allocated here */
2642 Bytef *pad; /* pad structure to a power of 2 (4 bytes for */
2643 } word; /* 16-bit, 8 bytes for 32-bit machines) */
2644 union {
2645 uInt Base; /* literal, length base, or distance base */
2646 inflate_huft *Next; /* pointer to next level of table */
2647 } more;
2648};
2649
2650#ifdef DEBUG_ZLIB
2651 local uInt inflate_hufts;
2652#endif
2653
2654local int inflate_trees_bits OF((
2655 uIntf *, /* 19 code lengths */
2656 uIntf *, /* bits tree desired/actual depth */
2657 inflate_huft * FAR *, /* bits tree result */
2658 z_stream *)); /* for zalloc, zfree functions */
2659
2660local int inflate_trees_dynamic OF((
2661 uInt, /* number of literal/length codes */
2662 uInt, /* number of distance codes */
2663 uIntf *, /* that many (total) code lengths */
2664 uIntf *, /* literal desired/actual bit depth */
2665 uIntf *, /* distance desired/actual bit depth */
2666 inflate_huft * FAR *, /* literal/length tree result */
2667 inflate_huft * FAR *, /* distance tree result */
2668 z_stream *)); /* for zalloc, zfree functions */
2669
2670local int inflate_trees_fixed OF((
2671 uIntf *, /* literal desired/actual bit depth */
2672 uIntf *, /* distance desired/actual bit depth */
2673 inflate_huft * FAR *, /* literal/length tree result */
2674 inflate_huft * FAR *)); /* distance tree result */
2675
2676local int inflate_trees_free OF((
2677 inflate_huft *, /* tables to free */
2678 z_stream *)); /* for zfree function */
2679
2680
2681/*+++++*/
2682/* infcodes.h -- header to use infcodes.c
2683 * Copyright (C) 1995 Mark Adler
2684 * For conditions of distribution and use, see copyright notice in zlib.h
2685 */
2686
2687/* WARNING: this file should *not* be used by applications. It is
2688 part of the implementation of the compression library and is
2689 subject to change. Applications should only use zlib.h.
2690 */
2691
2692struct inflate_codes_state;
2693typedef struct inflate_codes_state FAR inflate_codes_statef;
2694
2695local inflate_codes_statef *inflate_codes_new OF((
2696 uInt, uInt,
2697 inflate_huft *, inflate_huft *,
2698 z_stream *));
2699
2700local int inflate_codes OF((
2701 inflate_blocks_statef *,
2702 z_stream *,
2703 int));
2704
2705local void inflate_codes_free OF((
2706 inflate_codes_statef *,
2707 z_stream *));
2708
2709
2710/*+++++*/
2711/* inflate.c -- zlib interface to inflate modules
2712 * Copyright (C) 1995 Mark Adler
2713 * For conditions of distribution and use, see copyright notice in zlib.h
2714 */
2715
2716/* inflate private state */
2717struct internal_state {
2718
2719 /* mode */
2720 enum {
2721 METHOD, /* waiting for method byte */
2722 FLAG, /* waiting for flag byte */
2723 BLOCKS, /* decompressing blocks */
2724 CHECK4, /* four check bytes to go */
2725 CHECK3, /* three check bytes to go */
2726 CHECK2, /* two check bytes to go */
2727 CHECK1, /* one check byte to go */
2728 DONE, /* finished check, done */
a3418f2e 2729 ZBAD} /* got an error--stay here */
861c20b4
PM
2730 mode; /* current inflate mode */
2731
2732 /* mode dependent information */
2733 union {
2734 uInt method; /* if FLAGS, method byte */
2735 struct {
2736 uLong was; /* computed check value */
2737 uLong need; /* stream check value */
2738 } check; /* if CHECK, check values to compare */
a3418f2e 2739 uInt marker; /* if ZBAD, inflateSync's marker bytes count */
861c20b4
PM
2740 } sub; /* submode */
2741
2742 /* mode independent information */
2743 int nowrap; /* flag for no wrapper */
2744 uInt wbits; /* log2(window size) (8..15, defaults to 15) */
2745 inflate_blocks_statef
2746 *blocks; /* current inflate_blocks state */
2747
2748};
2749
2750
2751int inflateReset(z)
2752z_stream *z;
2753{
2754 uLong c;
2755
2756 if (z == Z_NULL || z->state == Z_NULL)
2757 return Z_STREAM_ERROR;
2758 z->total_in = z->total_out = 0;
2759 z->msg = Z_NULL;
2760 z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
2761 inflate_blocks_reset(z->state->blocks, z, &c);
2762 Trace((stderr, "inflate: reset\n"));
2763 return Z_OK;
2764}
2765
2766
2767int inflateEnd(z)
2768z_stream *z;
2769{
2770 uLong c;
2771
2772 if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
2773 return Z_STREAM_ERROR;
2774 if (z->state->blocks != Z_NULL)
2775 inflate_blocks_free(z->state->blocks, z, &c);
2776 ZFREE(z, z->state, sizeof(struct internal_state));
2777 z->state = Z_NULL;
2778 Trace((stderr, "inflate: end\n"));
2779 return Z_OK;
2780}
2781
2782
2783int inflateInit2(z, w)
2784z_stream *z;
2785int w;
2786{
2787 /* initialize state */
2788 if (z == Z_NULL)
2789 return Z_STREAM_ERROR;
2790/* if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */
2791/* if (z->zfree == Z_NULL) z->zfree = zcfree; */
2792 if ((z->state = (struct internal_state FAR *)
2793 ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
2794 return Z_MEM_ERROR;
2795 z->state->blocks = Z_NULL;
2796
2797 /* handle undocumented nowrap option (no zlib header or check) */
2798 z->state->nowrap = 0;
2799 if (w < 0)
2800 {
2801 w = - w;
2802 z->state->nowrap = 1;
2803 }
2804
2805 /* set window size */
2806 if (w < 8 || w > 15)
2807 {
2808 inflateEnd(z);
2809 return Z_STREAM_ERROR;
2810 }
2811 z->state->wbits = (uInt)w;
2812
2813 /* create inflate_blocks state */
2814 if ((z->state->blocks =
2815 inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w))
2816 == Z_NULL)
2817 {
2818 inflateEnd(z);
2819 return Z_MEM_ERROR;
2820 }
2821 Trace((stderr, "inflate: allocated\n"));
2822
2823 /* reset state */
2824 inflateReset(z);
2825 return Z_OK;
2826}
2827
2828
2829int inflateInit(z)
2830z_stream *z;
2831{
2832 return inflateInit2(z, DEF_WBITS);
2833}
2834
2835
2836#define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
2837#define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
2838
2839int inflate(z, f)
2840z_stream *z;
2841int f;
2842{
2843 int r;
2844 uInt b;
2845
2846 if (z == Z_NULL || z->next_in == Z_NULL)
2847 return Z_STREAM_ERROR;
2848 r = Z_BUF_ERROR;
2849 while (1) switch (z->state->mode)
2850 {
2851 case METHOD:
2852 NEEDBYTE
2853 if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED)
2854 {
a3418f2e 2855 z->state->mode = ZBAD;
861c20b4
PM
2856 z->msg = "unknown compression method";
2857 z->state->sub.marker = 5; /* can't try inflateSync */
2858 break;
2859 }
2860 if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
2861 {
a3418f2e 2862 z->state->mode = ZBAD;
861c20b4
PM
2863 z->msg = "invalid window size";
2864 z->state->sub.marker = 5; /* can't try inflateSync */
2865 break;
2866 }
2867 z->state->mode = FLAG;
2868 case FLAG:
2869 NEEDBYTE
2870 if ((b = NEXTBYTE) & 0x20)
2871 {
a3418f2e 2872 z->state->mode = ZBAD;
861c20b4
PM
2873 z->msg = "invalid reserved bit";
2874 z->state->sub.marker = 5; /* can't try inflateSync */
2875 break;
2876 }
2877 if (((z->state->sub.method << 8) + b) % 31)
2878 {
a3418f2e 2879 z->state->mode = ZBAD;
861c20b4
PM
2880 z->msg = "incorrect header check";
2881 z->state->sub.marker = 5; /* can't try inflateSync */
2882 break;
2883 }
2884 Trace((stderr, "inflate: zlib header ok\n"));
2885 z->state->mode = BLOCKS;
2886 case BLOCKS:
2887 r = inflate_blocks(z->state->blocks, z, r);
2888 if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
2889 r = inflate_packet_flush(z->state->blocks);
2890 if (r == Z_DATA_ERROR)
2891 {
a3418f2e 2892 z->state->mode = ZBAD;
861c20b4
PM
2893 z->state->sub.marker = 0; /* can try inflateSync */
2894 break;
2895 }
2896 if (r != Z_STREAM_END)
2897 return r;
2898 r = Z_OK;
2899 inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
2900 if (z->state->nowrap)
2901 {
2902 z->state->mode = DONE;
2903 break;
2904 }
2905 z->state->mode = CHECK4;
2906 case CHECK4:
2907 NEEDBYTE
2908 z->state->sub.check.need = (uLong)NEXTBYTE << 24;
2909 z->state->mode = CHECK3;
2910 case CHECK3:
2911 NEEDBYTE
2912 z->state->sub.check.need += (uLong)NEXTBYTE << 16;
2913 z->state->mode = CHECK2;
2914 case CHECK2:
2915 NEEDBYTE
2916 z->state->sub.check.need += (uLong)NEXTBYTE << 8;
2917 z->state->mode = CHECK1;
2918 case CHECK1:
2919 NEEDBYTE
2920 z->state->sub.check.need += (uLong)NEXTBYTE;
2921
2922 if (z->state->sub.check.was != z->state->sub.check.need)
2923 {
a3418f2e 2924 z->state->mode = ZBAD;
861c20b4
PM
2925 z->msg = "incorrect data check";
2926 z->state->sub.marker = 5; /* can't try inflateSync */
2927 break;
2928 }
2929 Trace((stderr, "inflate: zlib check ok\n"));
2930 z->state->mode = DONE;
2931 case DONE:
2932 return Z_STREAM_END;
a3418f2e 2933 case ZBAD:
861c20b4
PM
2934 return Z_DATA_ERROR;
2935 default:
2936 return Z_STREAM_ERROR;
2937 }
2938
2939 empty:
2940 if (f != Z_PACKET_FLUSH)
2941 return r;
a3418f2e 2942 z->state->mode = ZBAD;
861c20b4
PM
2943 z->state->sub.marker = 0; /* can try inflateSync */
2944 return Z_DATA_ERROR;
2945}
2946
2947/*
2948 * This subroutine adds the data at next_in/avail_in to the output history
2949 * without performing any output. The output buffer must be "caught up";
2950 * i.e. no pending output (hence s->read equals s->write), and the state must
2951 * be BLOCKS (i.e. we should be willing to see the start of a series of
2952 * BLOCKS). On exit, the output will also be caught up, and the checksum
2953 * will have been updated if need be.
2954 */
2955
2956int inflateIncomp(z)
2957z_stream *z;
2958{
2959 if (z->state->mode != BLOCKS)
2960 return Z_DATA_ERROR;
2961 return inflate_addhistory(z->state->blocks, z);
2962}
2963
2964
2965int inflateSync(z)
2966z_stream *z;
2967{
2968 uInt n; /* number of bytes to look at */
2969 Bytef *p; /* pointer to bytes */
2970 uInt m; /* number of marker bytes found in a row */
2971 uLong r, w; /* temporaries to save total_in and total_out */
2972
2973 /* set up */
2974 if (z == Z_NULL || z->state == Z_NULL)
2975 return Z_STREAM_ERROR;
a3418f2e 2976 if (z->state->mode != ZBAD)
861c20b4 2977 {
a3418f2e 2978 z->state->mode = ZBAD;
861c20b4
PM
2979 z->state->sub.marker = 0;
2980 }
2981 if ((n = z->avail_in) == 0)
2982 return Z_BUF_ERROR;
2983 p = z->next_in;
2984 m = z->state->sub.marker;
2985
2986 /* search */
2987 while (n && m < 4)
2988 {
2989 if (*p == (Byte)(m < 2 ? 0 : 0xff))
2990 m++;
2991 else if (*p)
2992 m = 0;
2993 else
2994 m = 4 - m;
2995 p++, n--;
2996 }
2997
2998 /* restore */
2999 z->total_in += p - z->next_in;
3000 z->next_in = p;
3001 z->avail_in = n;
3002 z->state->sub.marker = m;
3003
3004 /* return no joy or set up to restart on a new block */
3005 if (m != 4)
3006 return Z_DATA_ERROR;
3007 r = z->total_in; w = z->total_out;
3008 inflateReset(z);
3009 z->total_in = r; z->total_out = w;
3010 z->state->mode = BLOCKS;
3011 return Z_OK;
3012}
3013
3014#undef NEEDBYTE
3015#undef NEXTBYTE
3016
3017/*+++++*/
3018/* infutil.h -- types and macros common to blocks and codes
3019 * Copyright (C) 1995 Mark Adler
3020 * For conditions of distribution and use, see copyright notice in zlib.h
3021 */
3022
3023/* WARNING: this file should *not* be used by applications. It is
3024 part of the implementation of the compression library and is
3025 subject to change. Applications should only use zlib.h.
3026 */
3027
3028/* inflate blocks semi-private state */
3029struct inflate_blocks_state {
3030
3031 /* mode */
3032 enum {
3033 TYPE, /* get type bits (3, including end bit) */
3034 LENS, /* get lengths for stored */
3035 STORED, /* processing stored block */
3036 TABLE, /* get table lengths */
3037 BTREE, /* get bit lengths tree for a dynamic block */
3038 DTREE, /* get length, distance trees for a dynamic block */
3039 CODES, /* processing fixed or dynamic block */
3040 DRY, /* output remaining window bytes */
3041 DONEB, /* finished last block, done */
3042 BADB} /* got a data error--stuck here */
3043 mode; /* current inflate_block mode */
3044
3045 /* mode dependent information */
3046 union {
3047 uInt left; /* if STORED, bytes left to copy */
3048 struct {
3049 uInt table; /* table lengths (14 bits) */
3050 uInt index; /* index into blens (or border) */
3051 uIntf *blens; /* bit lengths of codes */
3052 uInt bb; /* bit length tree depth */
3053 inflate_huft *tb; /* bit length decoding tree */
3054 int nblens; /* # elements allocated at blens */
3055 } trees; /* if DTREE, decoding info for trees */
3056 struct {
3057 inflate_huft *tl, *td; /* trees to free */
3058 inflate_codes_statef
3059 *codes;
3060 } decode; /* if CODES, current state */
3061 } sub; /* submode */
3062 uInt last; /* true if this block is the last block */
3063
3064 /* mode independent information */
3065 uInt bitk; /* bits in bit buffer */
3066 uLong bitb; /* bit buffer */
3067 Bytef *window; /* sliding window */
3068 Bytef *end; /* one byte after sliding window */
3069 Bytef *read; /* window read pointer */
3070 Bytef *write; /* window write pointer */
3071 check_func checkfn; /* check function */
3072 uLong check; /* check on output */
3073
3074};
3075
3076
3077/* defines for inflate input/output */
3078/* update pointers and return */
3079#define UPDBITS {s->bitb=b;s->bitk=k;}
3080#define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3081#define UPDOUT {s->write=q;}
3082#define UPDATE {UPDBITS UPDIN UPDOUT}
3083#define LEAVE {UPDATE return inflate_flush(s,z,r);}
3084/* get bytes and bits */
3085#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3086#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3087#define NEXTBYTE (n--,*p++)
3088#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3089#define DUMPBITS(j) {b>>=(j);k-=(j);}
3090/* output bytes */
3091#define WAVAIL (q<s->read?s->read-q-1:s->end-q)
3092#define LOADOUT {q=s->write;m=WAVAIL;}
e950ec72 3093#define ZWRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}}
861c20b4 3094#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
e950ec72 3095#define NEEDOUT {if(m==0){ZWRAP if(m==0){FLUSH ZWRAP if(m==0) LEAVE}}r=Z_OK;}
861c20b4
PM
3096#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3097/* load local pointers */
3098#define LOAD {LOADIN LOADOUT}
3099
3100/* And'ing with mask[n] masks the lower n bits */
3101local uInt inflate_mask[] = {
3102 0x0000,
3103 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
3104 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
3105};
3106
3107/* copy as much as possible from the sliding window to the output area */
3108local int inflate_flush OF((
3109 inflate_blocks_statef *,
3110 z_stream *,
3111 int));
3112
3113/*+++++*/
3114/* inffast.h -- header to use inffast.c
3115 * Copyright (C) 1995 Mark Adler
3116 * For conditions of distribution and use, see copyright notice in zlib.h
3117 */
3118
3119/* WARNING: this file should *not* be used by applications. It is
3120 part of the implementation of the compression library and is
3121 subject to change. Applications should only use zlib.h.
3122 */
3123
3124local int inflate_fast OF((
3125 uInt,
3126 uInt,
3127 inflate_huft *,
3128 inflate_huft *,
3129 inflate_blocks_statef *,
3130 z_stream *));
3131
3132
3133/*+++++*/
3134/* infblock.c -- interpret and process block types to last block
3135 * Copyright (C) 1995 Mark Adler
3136 * For conditions of distribution and use, see copyright notice in zlib.h
3137 */
3138
3139/* Table for deflate from PKZIP's appnote.txt. */
3140local uInt border[] = { /* Order of the bit length code lengths */
3141 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3142
3143/*
3144 Notes beyond the 1.93a appnote.txt:
3145
3146 1. Distance pointers never point before the beginning of the output
3147 stream.
3148 2. Distance pointers can point back across blocks, up to 32k away.
3149 3. There is an implied maximum of 7 bits for the bit length table and
3150 15 bits for the actual data.
3151 4. If only one code exists, then it is encoded using one bit. (Zero
3152 would be more efficient, but perhaps a little confusing.) If two
3153 codes exist, they are coded using one bit each (0 and 1).
3154 5. There is no way of sending zero distance codes--a dummy must be
3155 sent if there are none. (History: a pre 2.0 version of PKZIP would
3156 store blocks with no distance codes, but this was discovered to be
3157 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
3158 zero distance codes, which is sent as one code of zero bits in
3159 length.
3160 6. There are up to 286 literal/length codes. Code 256 represents the
3161 end-of-block. Note however that the static length tree defines
3162 288 codes just to fill out the Huffman codes. Codes 286 and 287
3163 cannot be used though, since there is no length base or extra bits
3164 defined for them. Similarily, there are up to 30 distance codes.
3165 However, static trees define 32 codes (all 5 bits) to fill out the
3166 Huffman codes, but the last two had better not show up in the data.
3167 7. Unzip can check dynamic Huffman blocks for complete code sets.
3168 The exception is that a single code would not be complete (see #4).
3169 8. The five bits following the block type is really the number of
3170 literal codes sent minus 257.
3171 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3172 (1+6+6). Therefore, to output three times the length, you output
3173 three codes (1+1+1), whereas to output four times the same length,
3174 you only need two codes (1+3). Hmm.
3175 10. In the tree reconstruction algorithm, Code = Code + Increment
3176 only if BitLength(i) is not zero. (Pretty obvious.)
3177 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
3178 12. Note: length code 284 can represent 227-258, but length code 285
3179 really is 258. The last length deserves its own, short code
3180 since it gets used a lot in very redundant files. The length
3181 258 is special since 258 - 3 (the min match length) is 255.
3182 13. The literal/length and distance code bit lengths are read as a
3183 single stream of lengths. It is possible (and advantageous) for
3184 a repeat code (16, 17, or 18) to go across the boundary between
3185 the two sets of lengths.
3186 */
3187
3188
3189local void inflate_blocks_reset(s, z, c)
3190inflate_blocks_statef *s;
3191z_stream *z;
3192uLongf *c;
3193{
3194 if (s->checkfn != Z_NULL)
3195 *c = s->check;
3196 if (s->mode == BTREE || s->mode == DTREE)
3197 ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3198 if (s->mode == CODES)
3199 {
3200 inflate_codes_free(s->sub.decode.codes, z);
3201 inflate_trees_free(s->sub.decode.td, z);
3202 inflate_trees_free(s->sub.decode.tl, z);
3203 }
3204 s->mode = TYPE;
3205 s->bitk = 0;
3206 s->bitb = 0;
3207 s->read = s->write = s->window;
3208 if (s->checkfn != Z_NULL)
3209 s->check = (*s->checkfn)(0L, Z_NULL, 0);
3210 Trace((stderr, "inflate: blocks reset\n"));
3211}
3212
3213
3214local inflate_blocks_statef *inflate_blocks_new(z, c, w)
3215z_stream *z;
3216check_func c;
3217uInt w;
3218{
3219 inflate_blocks_statef *s;
3220
3221 if ((s = (inflate_blocks_statef *)ZALLOC
3222 (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3223 return s;
3224 if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3225 {
3226 ZFREE(z, s, sizeof(struct inflate_blocks_state));
3227 return Z_NULL;
3228 }
3229 s->end = s->window + w;
3230 s->checkfn = c;
3231 s->mode = TYPE;
3232 Trace((stderr, "inflate: blocks allocated\n"));
3233 inflate_blocks_reset(s, z, &s->check);
3234 return s;
3235}
3236
3237
3238local int inflate_blocks(s, z, r)
3239inflate_blocks_statef *s;
3240z_stream *z;
3241int r;
3242{
3243 uInt t; /* temporary storage */
3244 uLong b; /* bit buffer */
3245 uInt k; /* bits in bit buffer */
3246 Bytef *p; /* input data pointer */
3247 uInt n; /* bytes available there */
3248 Bytef *q; /* output window write pointer */
3249 uInt m; /* bytes to end of window or read pointer */
3250
3251 /* copy input/output information to locals (UPDATE macro restores) */
3252 LOAD
3253
3254 /* process input based on current state */
3255 while (1) switch (s->mode)
3256 {
3257 case TYPE:
3258 NEEDBITS(3)
3259 t = (uInt)b & 7;
3260 s->last = t & 1;
3261 switch (t >> 1)
3262 {
3263 case 0: /* stored */
3264 Trace((stderr, "inflate: stored block%s\n",
3265 s->last ? " (last)" : ""));
3266 DUMPBITS(3)
3267 t = k & 7; /* go to byte boundary */
3268 DUMPBITS(t)
3269 s->mode = LENS; /* get length of stored block */
3270 break;
3271 case 1: /* fixed */
3272 Trace((stderr, "inflate: fixed codes block%s\n",
3273 s->last ? " (last)" : ""));
3274 {
3275 uInt bl, bd;
3276 inflate_huft *tl, *td;
3277
3278 inflate_trees_fixed(&bl, &bd, &tl, &td);
3279 s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3280 if (s->sub.decode.codes == Z_NULL)
3281 {
3282 r = Z_MEM_ERROR;
3283 LEAVE
3284 }
3285 s->sub.decode.tl = Z_NULL; /* don't try to free these */
3286 s->sub.decode.td = Z_NULL;
3287 }
3288 DUMPBITS(3)
3289 s->mode = CODES;
3290 break;
3291 case 2: /* dynamic */
3292 Trace((stderr, "inflate: dynamic codes block%s\n",
3293 s->last ? " (last)" : ""));
3294 DUMPBITS(3)
3295 s->mode = TABLE;
3296 break;
3297 case 3: /* illegal */
3298 DUMPBITS(3)
3299 s->mode = BADB;
3300 z->msg = "invalid block type";
3301 r = Z_DATA_ERROR;
3302 LEAVE
3303 }
3304 break;
3305 case LENS:
3306 NEEDBITS(32)
3307 if (((~b) >> 16) != (b & 0xffff))
3308 {
3309 s->mode = BADB;
3310 z->msg = "invalid stored block lengths";
3311 r = Z_DATA_ERROR;
3312 LEAVE
3313 }
3314 s->sub.left = (uInt)b & 0xffff;
3315 b = k = 0; /* dump bits */
3316 Tracev((stderr, "inflate: stored length %u\n", s->sub.left));
3317 s->mode = s->sub.left ? STORED : TYPE;
3318 break;
3319 case STORED:
3320 if (n == 0)
3321 LEAVE
3322 NEEDOUT
3323 t = s->sub.left;
3324 if (t > n) t = n;
3325 if (t > m) t = m;
3326 zmemcpy(q, p, t);
3327 p += t; n -= t;
3328 q += t; m -= t;
3329 if ((s->sub.left -= t) != 0)
3330 break;
3331 Tracev((stderr, "inflate: stored end, %lu total out\n",
3332 z->total_out + (q >= s->read ? q - s->read :
3333 (s->end - s->read) + (q - s->window))));
3334 s->mode = s->last ? DRY : TYPE;
3335 break;
3336 case TABLE:
3337 NEEDBITS(14)
3338 s->sub.trees.table = t = (uInt)b & 0x3fff;
3339#ifndef PKZIP_BUG_WORKAROUND
3340 if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3341 {
3342 s->mode = BADB;
3343 z->msg = "too many length or distance symbols";
3344 r = Z_DATA_ERROR;
3345 LEAVE
3346 }
3347#endif
3348 t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3349 if (t < 19)
3350 t = 19;
3351 if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3352 {
3353 r = Z_MEM_ERROR;
3354 LEAVE
3355 }
3356 s->sub.trees.nblens = t;
3357 DUMPBITS(14)
3358 s->sub.trees.index = 0;
3359 Tracev((stderr, "inflate: table sizes ok\n"));
3360 s->mode = BTREE;
3361 case BTREE:
3362 while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3363 {
3364 NEEDBITS(3)
3365 s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3366 DUMPBITS(3)
3367 }
3368 while (s->sub.trees.index < 19)
3369 s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3370 s->sub.trees.bb = 7;
3371 t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3372 &s->sub.trees.tb, z);
3373 if (t != Z_OK)
3374 {
3375 r = t;
3376 if (r == Z_DATA_ERROR)
3377 s->mode = BADB;
3378 LEAVE
3379 }
3380 s->sub.trees.index = 0;
3381 Tracev((stderr, "inflate: bits tree ok\n"));
3382 s->mode = DTREE;
3383 case DTREE:
3384 while (t = s->sub.trees.table,
3385 s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3386 {
3387 inflate_huft *h;
3388 uInt i, j, c;
3389
3390 t = s->sub.trees.bb;
3391 NEEDBITS(t)
3392 h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3393 t = h->word.what.Bits;
3394 c = h->more.Base;
3395 if (c < 16)
3396 {
3397 DUMPBITS(t)
3398 s->sub.trees.blens[s->sub.trees.index++] = c;
3399 }
3400 else /* c == 16..18 */
3401 {
3402 i = c == 18 ? 7 : c - 14;
3403 j = c == 18 ? 11 : 3;
3404 NEEDBITS(t + i)
3405 DUMPBITS(t)
3406 j += (uInt)b & inflate_mask[i];
3407 DUMPBITS(i)
3408 i = s->sub.trees.index;
3409 t = s->sub.trees.table;
3410 if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3411 (c == 16 && i < 1))
3412 {
3413 s->mode = BADB;
3414 z->msg = "invalid bit length repeat";
3415 r = Z_DATA_ERROR;
3416 LEAVE
3417 }
3418 c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3419 do {
3420 s->sub.trees.blens[i++] = c;
3421 } while (--j);
3422 s->sub.trees.index = i;
3423 }
3424 }
3425 inflate_trees_free(s->sub.trees.tb, z);
3426 s->sub.trees.tb = Z_NULL;
3427 {
3428 uInt bl, bd;
3429 inflate_huft *tl, *td;
3430 inflate_codes_statef *c;
3431
3432 bl = 9; /* must be <= 9 for lookahead assumptions */
3433 bd = 6; /* must be <= 9 for lookahead assumptions */
3434 t = s->sub.trees.table;
3435 t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3436 s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3437 if (t != Z_OK)
3438 {
3439 if (t == (uInt)Z_DATA_ERROR)
3440 s->mode = BADB;
3441 r = t;
3442 LEAVE
3443 }
3444 Tracev((stderr, "inflate: trees ok\n"));
3445 if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3446 {
3447 inflate_trees_free(td, z);
3448 inflate_trees_free(tl, z);
3449 r = Z_MEM_ERROR;
3450 LEAVE
3451 }
3452 ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3453 s->sub.decode.codes = c;
3454 s->sub.decode.tl = tl;
3455 s->sub.decode.td = td;
3456 }
3457 s->mode = CODES;
3458 case CODES:
3459 UPDATE
3460 if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3461 return inflate_flush(s, z, r);
3462 r = Z_OK;
3463 inflate_codes_free(s->sub.decode.codes, z);
3464 inflate_trees_free(s->sub.decode.td, z);
3465 inflate_trees_free(s->sub.decode.tl, z);
3466 LOAD
3467 Tracev((stderr, "inflate: codes end, %lu total out\n",
3468 z->total_out + (q >= s->read ? q - s->read :
3469 (s->end - s->read) + (q - s->window))));
3470 if (!s->last)
3471 {
3472 s->mode = TYPE;
3473 break;
3474 }
3475 if (k > 7) /* return unused byte, if any */
3476 {
3477 Assert(k < 16, "inflate_codes grabbed too many bytes")
3478 k -= 8;
3479 n++;
3480 p--; /* can always return one */
3481 }
3482 s->mode = DRY;
3483 case DRY:
3484 FLUSH
3485 if (s->read != s->write)
3486 LEAVE
3487 s->mode = DONEB;
3488 case DONEB:
3489 r = Z_STREAM_END;
3490 LEAVE
3491 case BADB:
3492 r = Z_DATA_ERROR;
3493 LEAVE
3494 default:
3495 r = Z_STREAM_ERROR;
3496 LEAVE
3497 }
3498}
3499
3500
3501local int inflate_blocks_free(s, z, c)
3502inflate_blocks_statef *s;
3503z_stream *z;
3504uLongf *c;
3505{
3506 inflate_blocks_reset(s, z, c);
3507 ZFREE(z, s->window, s->end - s->window);
3508 ZFREE(z, s, sizeof(struct inflate_blocks_state));
3509 Trace((stderr, "inflate: blocks freed\n"));
3510 return Z_OK;
3511}
3512
3513/*
3514 * This subroutine adds the data at next_in/avail_in to the output history
3515 * without performing any output. The output buffer must be "caught up";
3516 * i.e. no pending output (hence s->read equals s->write), and the state must
3517 * be BLOCKS (i.e. we should be willing to see the start of a series of
3518 * BLOCKS). On exit, the output will also be caught up, and the checksum
3519 * will have been updated if need be.
3520 */
3521local int inflate_addhistory(s, z)
3522inflate_blocks_statef *s;
3523z_stream *z;
3524{
3525 uLong b; /* bit buffer */ /* NOT USED HERE */
3526 uInt k; /* bits in bit buffer */ /* NOT USED HERE */
3527 uInt t; /* temporary storage */
3528 Bytef *p; /* input data pointer */
3529 uInt n; /* bytes available there */
3530 Bytef *q; /* output window write pointer */
3531 uInt m; /* bytes to end of window or read pointer */
3532
3533 if (s->read != s->write)
3534 return Z_STREAM_ERROR;
3535 if (s->mode != TYPE)
3536 return Z_DATA_ERROR;
3537
3538 /* we're ready to rock */
3539 LOAD
3540 /* while there is input ready, copy to output buffer, moving
3541 * pointers as needed.
3542 */
3543 while (n) {
3544 t = n; /* how many to do */
3545 /* is there room until end of buffer? */
3546 if (t > m) t = m;
3547 /* update check information */
3548 if (s->checkfn != Z_NULL)
3549 s->check = (*s->checkfn)(s->check, q, t);
3550 zmemcpy(q, p, t);
3551 q += t;
3552 p += t;
3553 n -= t;
3554 z->total_out += t;
3555 s->read = q; /* drag read pointer forward */
e950ec72 3556/* ZWRAP */ /* expand ZWRAP macro by hand to handle s->read */
861c20b4
PM
3557 if (q == s->end) {
3558 s->read = q = s->window;
3559 m = WAVAIL;
3560 }
3561 }
3562 UPDATE
3563 return Z_OK;
3564}
3565
3566
3567/*
3568 * At the end of a Deflate-compressed PPP packet, we expect to have seen
3569 * a `stored' block type value but not the (zero) length bytes.
3570 */
3571local int inflate_packet_flush(s)
3572 inflate_blocks_statef *s;
3573{
3574 if (s->mode != LENS)
3575 return Z_DATA_ERROR;
3576 s->mode = TYPE;
3577 return Z_OK;
3578}
3579
3580
3581/*+++++*/
3582/* inftrees.c -- generate Huffman trees for efficient decoding
3583 * Copyright (C) 1995 Mark Adler
3584 * For conditions of distribution and use, see copyright notice in zlib.h
3585 */
3586
3587/* simplify the use of the inflate_huft type with some defines */
3588#define base more.Base
3589#define next more.Next
3590#define exop word.what.Exop
3591#define bits word.what.Bits
3592
3593
3594local int huft_build OF((
3595 uIntf *, /* code lengths in bits */
3596 uInt, /* number of codes */
3597 uInt, /* number of "simple" codes */
3598 uIntf *, /* list of base values for non-simple codes */
3599 uIntf *, /* list of extra bits for non-simple codes */
3600 inflate_huft * FAR*,/* result: starting table */
3601 uIntf *, /* maximum lookup bits (returns actual) */
3602 z_stream *)); /* for zalloc function */
3603
3604local voidpf falloc OF((
3605 voidpf, /* opaque pointer (not used) */
3606 uInt, /* number of items */
3607 uInt)); /* size of item */
3608
3609local void ffree OF((
3610 voidpf q, /* opaque pointer (not used) */
3611 voidpf p, /* what to free (not used) */
3612 uInt n)); /* number of bytes (not used) */
3613
3614/* Tables for deflate from PKZIP's appnote.txt. */
3615local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
3616 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
3617 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
3618 /* actually lengths - 2; also see note #13 above about 258 */
3619local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
3620 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3621 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
3622local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
3623 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
3624 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
3625 8193, 12289, 16385, 24577};
3626local uInt cpdext[] = { /* Extra bits for distance codes */
3627 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
3628 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
3629 12, 12, 13, 13};
3630
3631/*
3632 Huffman code decoding is performed using a multi-level table lookup.
3633 The fastest way to decode is to simply build a lookup table whose
3634 size is determined by the longest code. However, the time it takes
3635 to build this table can also be a factor if the data being decoded
3636 is not very long. The most common codes are necessarily the
3637 shortest codes, so those codes dominate the decoding time, and hence
3638 the speed. The idea is you can have a shorter table that decodes the
3639 shorter, more probable codes, and then point to subsidiary tables for
3640 the longer codes. The time it costs to decode the longer codes is
3641 then traded against the time it takes to make longer tables.
3642
3643 This results of this trade are in the variables lbits and dbits
3644 below. lbits is the number of bits the first level table for literal/
3645 length codes can decode in one step, and dbits is the same thing for
3646 the distance codes. Subsequent tables are also less than or equal to
3647 those sizes. These values may be adjusted either when all of the
3648 codes are shorter than that, in which case the longest code length in
3649 bits is used, or when the shortest code is *longer* than the requested
3650 table size, in which case the length of the shortest code in bits is
3651 used.
3652
3653 There are two different values for the two tables, since they code a
3654 different number of possibilities each. The literal/length table
3655 codes 286 possible values, or in a flat code, a little over eight
3656 bits. The distance table codes 30 possible values, or a little less
3657 than five bits, flat. The optimum values for speed end up being
3658 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
3659 The optimum values may differ though from machine to machine, and
3660 possibly even between compilers. Your mileage may vary.
3661 */
3662
3663
3664/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
3665#define BMAX 15 /* maximum bit length of any code */
3666#define N_MAX 288 /* maximum number of codes in any set */
3667
3668#ifdef DEBUG_ZLIB
3669 uInt inflate_hufts;
3670#endif
3671
3672local int huft_build(b, n, s, d, e, t, m, zs)
3673uIntf *b; /* code lengths in bits (all assumed <= BMAX) */
3674uInt n; /* number of codes (assumed <= N_MAX) */
3675uInt s; /* number of simple-valued codes (0..s-1) */
3676uIntf *d; /* list of base values for non-simple codes */
3677uIntf *e; /* list of extra bits for non-simple codes */
3678inflate_huft * FAR *t; /* result: starting table */
3679uIntf *m; /* maximum lookup bits, returns actual */
3680z_stream *zs; /* for zalloc function */
3681/* Given a list of code lengths and a maximum table size, make a set of
3682 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR
3683 if the given code set is incomplete (the tables are still built in this
3684 case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
3685 over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
3686{
3687
3688 uInt a; /* counter for codes of length k */
3689 uInt c[BMAX+1]; /* bit length count table */
3690 uInt f; /* i repeats in table every f entries */
3691 int g; /* maximum code length */
3692 int h; /* table level */
3693 register uInt i; /* counter, current code */
3694 register uInt j; /* counter */
3695 register int k; /* number of bits in current code */
3696 int l; /* bits per table (returned in m) */
3697 register uIntf *p; /* pointer into c[], b[], or v[] */
3698 inflate_huft *q; /* points to current table */
3699 struct inflate_huft_s r; /* table entry for structure assignment */
3700 inflate_huft *u[BMAX]; /* table stack */
3701 uInt v[N_MAX]; /* values in order of bit length */
3702 register int w; /* bits before this table == (l * h) */
3703 uInt x[BMAX+1]; /* bit offsets, then code stack */
3704 uIntf *xp; /* pointer into x */
3705 int y; /* number of dummy codes added */
3706 uInt z; /* number of entries in current table */
3707
3708
3709 /* Generate counts for each bit length */
3710 p = c;
3711#define C0 *p++ = 0;
3712#define C2 C0 C0 C0 C0
3713#define C4 C2 C2 C2 C2
3714 C4 /* clear c[]--assume BMAX+1 is 16 */
3715 p = b; i = n;
3716 do {
3717 c[*p++]++; /* assume all entries <= BMAX */
3718 } while (--i);
3719 if (c[0] == n) /* null input--all zero length codes */
3720 {
3721 *t = (inflate_huft *)Z_NULL;
3722 *m = 0;
3723 return Z_OK;
3724 }
3725
3726
3727 /* Find minimum and maximum length, bound *m by those */
3728 l = *m;
3729 for (j = 1; j <= BMAX; j++)
3730 if (c[j])
3731 break;
3732 k = j; /* minimum code length */
3733 if ((uInt)l < j)
3734 l = j;
3735 for (i = BMAX; i; i--)
3736 if (c[i])
3737 break;
3738 g = i; /* maximum code length */
3739 if ((uInt)l > i)
3740 l = i;
3741 *m = l;
3742
3743
3744 /* Adjust last length count to fill out codes, if needed */
3745 for (y = 1 << j; j < i; j++, y <<= 1)
3746 if ((y -= c[j]) < 0)
3747 return Z_DATA_ERROR;
3748 if ((y -= c[i]) < 0)
3749 return Z_DATA_ERROR;
3750 c[i] += y;
3751
3752
3753 /* Generate starting offsets into the value table for each length */
3754 x[1] = j = 0;
3755 p = c + 1; xp = x + 2;
3756 while (--i) { /* note that i == g from above */
3757 *xp++ = (j += *p++);
3758 }
3759
3760
3761 /* Make a table of values in order of bit lengths */
3762 p = b; i = 0;
3763 do {
3764 if ((j = *p++) != 0)
3765 v[x[j]++] = i;
3766 } while (++i < n);
3767
3768
3769 /* Generate the Huffman codes and for each, make the table entries */
3770 x[0] = i = 0; /* first Huffman code is zero */
3771 p = v; /* grab values in bit order */
3772 h = -1; /* no tables yet--level -1 */
3773 w = -l; /* bits decoded == (l * h) */
3774 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */
3775 q = (inflate_huft *)Z_NULL; /* ditto */
3776 z = 0; /* ditto */
3777
3778 /* go through the bit lengths (k already is bits in shortest code) */
3779 for (; k <= g; k++)
3780 {
3781 a = c[k];
3782 while (a--)
3783 {
3784 /* here i is the Huffman code of length k bits for value *p */
3785 /* make tables up to required level */
3786 while (k > w + l)
3787 {
3788 h++;
3789 w += l; /* previous table always l bits */
3790
3791 /* compute minimum size table less than or equal to l bits */
3792 z = (z = g - w) > (uInt)l ? l : z; /* table size upper limit */
3793 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
3794 { /* too few codes for k-w bit table */
3795 f -= a + 1; /* deduct codes from patterns left */
3796 xp = c + k;
3797 if (j < z)
3798 while (++j < z) /* try smaller tables up to z bits */
3799 {
3800 if ((f <<= 1) <= *++xp)
3801 break; /* enough codes to use up j bits */
3802 f -= *xp; /* else deduct codes from patterns */
3803 }
3804 }
3805 z = 1 << j; /* table entries for j-bit table */
3806
3807 /* allocate and link in new table */
3808 if ((q = (inflate_huft *)ZALLOC
3809 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
3810 {
3811 if (h)
3812 inflate_trees_free(u[0], zs);
3813 return Z_MEM_ERROR; /* not enough memory */
3814 }
3815 q->word.Nalloc = z + 1;
3816#ifdef DEBUG_ZLIB
3817 inflate_hufts += z + 1;
3818#endif
3819 *t = q + 1; /* link to list for huft_free() */
3820 *(t = &(q->next)) = Z_NULL;
3821 u[h] = ++q; /* table starts after link */
3822
3823 /* connect to last table, if there is one */
3824 if (h)
3825 {
3826 x[h] = i; /* save pattern for backing up */
3827 r.bits = (Byte)l; /* bits to dump before this table */
3828 r.exop = (Byte)j; /* bits in this table */
3829 r.next = q; /* pointer to this table */
3830 j = i >> (w - l); /* (get around Turbo C bug) */
3831 u[h-1][j] = r; /* connect to last table */
3832 }
3833 }
3834
3835 /* set up table entry in r */
3836 r.bits = (Byte)(k - w);
3837 if (p >= v + n)
3838 r.exop = 128 + 64; /* out of values--invalid code */
3839 else if (*p < s)
3840 {
3841 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */
3842 r.base = *p++; /* simple code is just the value */
3843 }
3844 else
3845 {
3846 r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */
3847 r.base = d[*p++ - s];
3848 }
3849
3850 /* fill code-like entries with r */
3851 f = 1 << (k - w);
3852 for (j = i >> w; j < z; j += f)
3853 q[j] = r;
3854
3855 /* backwards increment the k-bit code i */
3856 for (j = 1 << (k - 1); i & j; j >>= 1)
3857 i ^= j;
3858 i ^= j;
3859
3860 /* backup over finished tables */
3861 while ((i & ((1 << w) - 1)) != x[h])
3862 {
3863 h--; /* don't need to update q */
3864 w -= l;
3865 }
3866 }
3867 }
3868
3869
3870 /* Return Z_BUF_ERROR if we were given an incomplete table */
3871 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
3872}
3873
3874
3875local int inflate_trees_bits(c, bb, tb, z)
3876uIntf *c; /* 19 code lengths */
3877uIntf *bb; /* bits tree desired/actual depth */
3878inflate_huft * FAR *tb; /* bits tree result */
3879z_stream *z; /* for zfree function */
3880{
3881 int r;
3882
3883 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
3884 if (r == Z_DATA_ERROR)
3885 z->msg = "oversubscribed dynamic bit lengths tree";
3886 else if (r == Z_BUF_ERROR)
3887 {
3888 inflate_trees_free(*tb, z);
3889 z->msg = "incomplete dynamic bit lengths tree";
3890 r = Z_DATA_ERROR;
3891 }
3892 return r;
3893}
3894
3895
3896local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
3897uInt nl; /* number of literal/length codes */
3898uInt nd; /* number of distance codes */
3899uIntf *c; /* that many (total) code lengths */
3900uIntf *bl; /* literal desired/actual bit depth */
3901uIntf *bd; /* distance desired/actual bit depth */
3902inflate_huft * FAR *tl; /* literal/length tree result */
3903inflate_huft * FAR *td; /* distance tree result */
3904z_stream *z; /* for zfree function */
3905{
3906 int r;
3907
3908 /* build literal/length tree */
3909 if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
3910 {
3911 if (r == Z_DATA_ERROR)
3912 z->msg = "oversubscribed literal/length tree";
3913 else if (r == Z_BUF_ERROR)
3914 {
3915 inflate_trees_free(*tl, z);
3916 z->msg = "incomplete literal/length tree";
3917 r = Z_DATA_ERROR;
3918 }
3919 return r;
3920 }
3921
3922 /* build distance tree */
3923 if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
3924 {
3925 if (r == Z_DATA_ERROR)
3926 z->msg = "oversubscribed literal/length tree";
3927 else if (r == Z_BUF_ERROR) {
3928#ifdef PKZIP_BUG_WORKAROUND
3929 r = Z_OK;
3930 }
3931#else
3932 inflate_trees_free(*td, z);
3933 z->msg = "incomplete literal/length tree";
3934 r = Z_DATA_ERROR;
3935 }
3936 inflate_trees_free(*tl, z);
3937 return r;
3938#endif
3939 }
3940
3941 /* done */
3942 return Z_OK;
3943}
3944
3945
3946/* build fixed tables only once--keep them here */
774ef68f
PM
3947#ifdef MULTI_THREADED
3948local volatile int fixed_lock = 0;
3949#endif
861c20b4
PM
3950local int fixed_built = 0;
3951#define FIXEDH 530 /* number of hufts used by fixed tables */
3952local uInt fixed_left = FIXEDH;
3953local inflate_huft fixed_mem[FIXEDH];
3954local uInt fixed_bl;
3955local uInt fixed_bd;
3956local inflate_huft *fixed_tl;
3957local inflate_huft *fixed_td;
3958
3959
3960local voidpf falloc(q, n, s)
3961voidpf q; /* opaque pointer (not used) */
3962uInt n; /* number of items */
3963uInt s; /* size of item */
3964{
3965 Assert(s == sizeof(inflate_huft) && n <= fixed_left,
3966 "inflate_trees falloc overflow");
3967 if (q) s++; /* to make some compilers happy */
3968 fixed_left -= n;
3969 return (voidpf)(fixed_mem + fixed_left);
3970}
3971
3972
3973local void ffree(q, p, n)
3974voidpf q;
3975voidpf p;
3976uInt n;
3977{
3978 Assert(0, "inflate_trees ffree called!");
3979 if (q) q = p; /* to make some compilers happy */
3980}
3981
3982
3983local int inflate_trees_fixed(bl, bd, tl, td)
3984uIntf *bl; /* literal desired/actual bit depth */
3985uIntf *bd; /* distance desired/actual bit depth */
3986inflate_huft * FAR *tl; /* literal/length tree result */
3987inflate_huft * FAR *td; /* distance tree result */
3988{
3989 /* build fixed tables if not built already--lock out other instances */
774ef68f 3990#ifdef MULTI_THREADED
861c20b4
PM
3991 while (++fixed_lock > 1)
3992 fixed_lock--;
774ef68f 3993#endif
861c20b4
PM
3994 if (!fixed_built)
3995 {
3996 int k; /* temporary variable */
3997 unsigned c[288]; /* length list for huft_build */
3998 z_stream z; /* for falloc function */
3999
4000 /* set up fake z_stream for memory routines */
4001 z.zalloc = falloc;
4002 z.zfree = ffree;
4003 z.opaque = Z_NULL;
4004
4005 /* literal table */
4006 for (k = 0; k < 144; k++)
4007 c[k] = 8;
4008 for (; k < 256; k++)
4009 c[k] = 9;
4010 for (; k < 280; k++)
4011 c[k] = 7;
4012 for (; k < 288; k++)
4013 c[k] = 8;
4014 fixed_bl = 7;
4015 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4016
4017 /* distance table */
4018 for (k = 0; k < 30; k++)
4019 c[k] = 5;
4020 fixed_bd = 5;
4021 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4022
4023 /* done */
4024 fixed_built = 1;
4025 }
774ef68f 4026#ifdef MULTI_THREADED
861c20b4 4027 fixed_lock--;
774ef68f 4028#endif
861c20b4
PM
4029 *bl = fixed_bl;
4030 *bd = fixed_bd;
4031 *tl = fixed_tl;
4032 *td = fixed_td;
4033 return Z_OK;
4034}
4035
4036
4037local int inflate_trees_free(t, z)
4038inflate_huft *t; /* table to free */
4039z_stream *z; /* for zfree function */
4040/* Free the malloc'ed tables built by huft_build(), which makes a linked
4041 list of the tables it made, with the links in a dummy first entry of
4042 each table. */
4043{
4044 register inflate_huft *p, *q;
4045
4046 /* Go through linked list, freeing from the malloced (t[-1]) address. */
4047 p = t;
4048 while (p != Z_NULL)
4049 {
4050 q = (--p)->next;
4051 ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft));
4052 p = q;
4053 }
4054 return Z_OK;
4055}
4056
4057/*+++++*/
4058/* infcodes.c -- process literals and length/distance pairs
4059 * Copyright (C) 1995 Mark Adler
4060 * For conditions of distribution and use, see copyright notice in zlib.h
4061 */
4062
4063/* simplify the use of the inflate_huft type with some defines */
4064#define base more.Base
4065#define next more.Next
4066#define exop word.what.Exop
4067#define bits word.what.Bits
4068
4069/* inflate codes private state */
4070struct inflate_codes_state {
4071
4072 /* mode */
4073 enum { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4074 START, /* x: set up for LEN */
4075 LEN, /* i: get length/literal/eob next */
4076 LENEXT, /* i: getting length extra (have base) */
4077 DIST, /* i: get distance next */
4078 DISTEXT, /* i: getting distance extra */
4079 COPY, /* o: copying bytes in window, waiting for space */
4080 LIT, /* o: got literal, waiting for output space */
4081 WASH, /* o: got eob, possibly still output waiting */
4082 END, /* x: got eob and all data flushed */
4083 BADCODE} /* x: got error */
4084 mode; /* current inflate_codes mode */
4085
4086 /* mode dependent information */
4087 uInt len;
4088 union {
4089 struct {
4090 inflate_huft *tree; /* pointer into tree */
4091 uInt need; /* bits needed */
4092 } code; /* if LEN or DIST, where in tree */
4093 uInt lit; /* if LIT, literal */
4094 struct {
4095 uInt get; /* bits to get for extra */
4096 uInt dist; /* distance back to copy from */
4097 } copy; /* if EXT or COPY, where and how much */
4098 } sub; /* submode */
4099
4100 /* mode independent information */
4101 Byte lbits; /* ltree bits decoded per branch */
4102 Byte dbits; /* dtree bits decoder per branch */
4103 inflate_huft *ltree; /* literal/length/eob tree */
4104 inflate_huft *dtree; /* distance tree */
4105
4106};
4107
4108
4109local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4110uInt bl, bd;
4111inflate_huft *tl, *td;
4112z_stream *z;
4113{
4114 inflate_codes_statef *c;
4115
4116 if ((c = (inflate_codes_statef *)
4117 ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4118 {
4119 c->mode = START;
4120 c->lbits = (Byte)bl;
4121 c->dbits = (Byte)bd;
4122 c->ltree = tl;
4123 c->dtree = td;
4124 Tracev((stderr, "inflate: codes new\n"));
4125 }
4126 return c;
4127}
4128
4129
4130local int inflate_codes(s, z, r)
4131inflate_blocks_statef *s;
4132z_stream *z;
4133int r;
4134{
4135 uInt j; /* temporary storage */
4136 inflate_huft *t; /* temporary pointer */
4137 uInt e; /* extra bits or operation */
4138 uLong b; /* bit buffer */
4139 uInt k; /* bits in bit buffer */
4140 Bytef *p; /* input data pointer */
4141 uInt n; /* bytes available there */
4142 Bytef *q; /* output window write pointer */
4143 uInt m; /* bytes to end of window or read pointer */
4144 Bytef *f; /* pointer to copy strings from */
4145 inflate_codes_statef *c = s->sub.decode.codes; /* codes state */
4146
4147 /* copy input/output information to locals (UPDATE macro restores) */
4148 LOAD
4149
4150 /* process input and output based on current state */
4151 while (1) switch (c->mode)
4152 { /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4153 case START: /* x: set up for LEN */
4154#ifndef SLOW
4155 if (m >= 258 && n >= 10)
4156 {
4157 UPDATE
4158 r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4159 LOAD
4160 if (r != Z_OK)
4161 {
4162 c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4163 break;
4164 }
4165 }
4166#endif /* !SLOW */
4167 c->sub.code.need = c->lbits;
4168 c->sub.code.tree = c->ltree;
4169 c->mode = LEN;
4170 case LEN: /* i: get length/literal/eob next */
4171 j = c->sub.code.need;
4172 NEEDBITS(j)
4173 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4174 DUMPBITS(t->bits)
4175 e = (uInt)(t->exop);
4176 if (e == 0) /* literal */
4177 {
4178 c->sub.lit = t->base;
4179 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4180 "inflate: literal '%c'\n" :
4181 "inflate: literal 0x%02x\n", t->base));
4182 c->mode = LIT;
4183 break;
4184 }
4185 if (e & 16) /* length */
4186 {
4187 c->sub.copy.get = e & 15;
4188 c->len = t->base;
4189 c->mode = LENEXT;
4190 break;
4191 }
4192 if ((e & 64) == 0) /* next table */
4193 {
4194 c->sub.code.need = e;
4195 c->sub.code.tree = t->next;
4196 break;
4197 }
4198 if (e & 32) /* end of block */
4199 {
4200 Tracevv((stderr, "inflate: end of block\n"));
4201 c->mode = WASH;
4202 break;
4203 }
4204 c->mode = BADCODE; /* invalid code */
4205 z->msg = "invalid literal/length code";
4206 r = Z_DATA_ERROR;
4207 LEAVE
4208 case LENEXT: /* i: getting length extra (have base) */
4209 j = c->sub.copy.get;
4210 NEEDBITS(j)
4211 c->len += (uInt)b & inflate_mask[j];
4212 DUMPBITS(j)
4213 c->sub.code.need = c->dbits;
4214 c->sub.code.tree = c->dtree;
4215 Tracevv((stderr, "inflate: length %u\n", c->len));
4216 c->mode = DIST;
4217 case DIST: /* i: get distance next */
4218 j = c->sub.code.need;
4219 NEEDBITS(j)
4220 t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4221 DUMPBITS(t->bits)
4222 e = (uInt)(t->exop);
4223 if (e & 16) /* distance */
4224 {
4225 c->sub.copy.get = e & 15;
4226 c->sub.copy.dist = t->base;
4227 c->mode = DISTEXT;
4228 break;
4229 }
4230 if ((e & 64) == 0) /* next table */
4231 {
4232 c->sub.code.need = e;
4233 c->sub.code.tree = t->next;
4234 break;
4235 }
4236 c->mode = BADCODE; /* invalid code */
4237 z->msg = "invalid distance code";
4238 r = Z_DATA_ERROR;
4239 LEAVE
4240 case DISTEXT: /* i: getting distance extra */
4241 j = c->sub.copy.get;
4242 NEEDBITS(j)
4243 c->sub.copy.dist += (uInt)b & inflate_mask[j];
4244 DUMPBITS(j)
4245 Tracevv((stderr, "inflate: distance %u\n", c->sub.copy.dist));
4246 c->mode = COPY;
4247 case COPY: /* o: copying bytes in window, waiting for space */
4248#ifndef __TURBOC__ /* Turbo C bug for following expression */
4249 f = (uInt)(q - s->window) < c->sub.copy.dist ?
4250 s->end - (c->sub.copy.dist - (q - s->window)) :
4251 q - c->sub.copy.dist;
4252#else
4253 f = q - c->sub.copy.dist;
4254 if ((uInt)(q - s->window) < c->sub.copy.dist)
4255 f = s->end - (c->sub.copy.dist - (q - s->window));
4256#endif
4257 while (c->len)
4258 {
4259 NEEDOUT
4260 OUTBYTE(*f++)
4261 if (f == s->end)
4262 f = s->window;
4263 c->len--;
4264 }
4265 c->mode = START;
4266 break;
4267 case LIT: /* o: got literal, waiting for output space */
4268 NEEDOUT
4269 OUTBYTE(c->sub.lit)
4270 c->mode = START;
4271 break;
4272 case WASH: /* o: got eob, possibly more output */
4273 FLUSH
4274 if (s->read != s->write)
4275 LEAVE
4276 c->mode = END;
4277 case END:
4278 r = Z_STREAM_END;
4279 LEAVE
4280 case BADCODE: /* x: got error */
4281 r = Z_DATA_ERROR;
4282 LEAVE
4283 default:
4284 r = Z_STREAM_ERROR;
4285 LEAVE
4286 }
4287}
4288
4289
4290local void inflate_codes_free(c, z)
4291inflate_codes_statef *c;
4292z_stream *z;
4293{
4294 ZFREE(z, c, sizeof(struct inflate_codes_state));
4295 Tracev((stderr, "inflate: codes free\n"));
4296}
4297
4298/*+++++*/
4299/* inflate_util.c -- data and routines common to blocks and codes
4300 * Copyright (C) 1995 Mark Adler
4301 * For conditions of distribution and use, see copyright notice in zlib.h
4302 */
4303
4304/* copy as much as possible from the sliding window to the output area */
4305local int inflate_flush(s, z, r)
4306inflate_blocks_statef *s;
4307z_stream *z;
4308int r;
4309{
4310 uInt n;
4311 Bytef *p, *q;
4312
4313 /* local copies of source and destination pointers */
4314 p = z->next_out;
4315 q = s->read;
4316
4317 /* compute number of bytes to copy as far as end of window */
4318 n = (uInt)((q <= s->write ? s->write : s->end) - q);
4319 if (n > z->avail_out) n = z->avail_out;
4320 if (n && r == Z_BUF_ERROR) r = Z_OK;
4321
4322 /* update counters */
4323 z->avail_out -= n;
4324 z->total_out += n;
4325
4326 /* update check information */
4327 if (s->checkfn != Z_NULL)
4328 s->check = (*s->checkfn)(s->check, q, n);
4329
4330 /* copy as far as end of window */
4331 if (p != NULL) {
4332 zmemcpy(p, q, n);
4333 p += n;
4334 }
4335 q += n;
4336
4337 /* see if more to copy at beginning of window */
4338 if (q == s->end)
4339 {
4340 /* wrap pointers */
4341 q = s->window;
4342 if (s->write == s->end)
4343 s->write = s->window;
4344
4345 /* compute bytes to copy */
4346 n = (uInt)(s->write - q);
4347 if (n > z->avail_out) n = z->avail_out;
4348 if (n && r == Z_BUF_ERROR) r = Z_OK;
4349
4350 /* update counters */
4351 z->avail_out -= n;
4352 z->total_out += n;
4353
4354 /* update check information */
4355 if (s->checkfn != Z_NULL)
4356 s->check = (*s->checkfn)(s->check, q, n);
4357
4358 /* copy */
4359 if (p != NULL) {
4360 zmemcpy(p, q, n);
4361 p += n;
4362 }
4363 q += n;
4364 }
4365
4366 /* update pointers */
4367 z->next_out = p;
4368 s->read = q;
4369
4370 /* done */
4371 return r;
4372}
4373
4374
4375/*+++++*/
4376/* inffast.c -- process literals and length/distance pairs fast
4377 * Copyright (C) 1995 Mark Adler
4378 * For conditions of distribution and use, see copyright notice in zlib.h
4379 */
4380
4381/* simplify the use of the inflate_huft type with some defines */
4382#define base more.Base
4383#define next more.Next
4384#define exop word.what.Exop
4385#define bits word.what.Bits
4386
4387/* macros for bit input with no checking and for returning unused bytes */
4388#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4389#define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4390
4391/* Called with number of bytes left to write in window at least 258
4392 (the maximum string length) and number of input bytes available
4393 at least ten. The ten bytes are six bytes for the longest length/
4394 distance pair plus four bytes for overloading the bit buffer. */
4395
4396local int inflate_fast(bl, bd, tl, td, s, z)
4397uInt bl, bd;
4398inflate_huft *tl, *td;
4399inflate_blocks_statef *s;
4400z_stream *z;
4401{
4402 inflate_huft *t; /* temporary pointer */
4403 uInt e; /* extra bits or operation */
4404 uLong b; /* bit buffer */
4405 uInt k; /* bits in bit buffer */
4406 Bytef *p; /* input data pointer */
4407 uInt n; /* bytes available there */
4408 Bytef *q; /* output window write pointer */
4409 uInt m; /* bytes to end of window or read pointer */
4410 uInt ml; /* mask for literal/length tree */
4411 uInt md; /* mask for distance tree */
4412 uInt c; /* bytes to copy */
4413 uInt d; /* distance back to copy from */
4414 Bytef *r; /* copy source pointer */
4415
4416 /* load input, output, bit values */
4417 LOAD
4418
4419 /* initialize masks */
4420 ml = inflate_mask[bl];
4421 md = inflate_mask[bd];
4422
4423 /* do until not enough input or output space for fast loop */
4424 do { /* assume called with m >= 258 && n >= 10 */
4425 /* get literal/length code */
4426 GRABBITS(20) /* max bits for literal/length code */
4427 if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4428 {
4429 DUMPBITS(t->bits)
4430 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4431 "inflate: * literal '%c'\n" :
4432 "inflate: * literal 0x%02x\n", t->base));
4433 *q++ = (Byte)t->base;
4434 m--;
4435 continue;
4436 }
4437 do {
4438 DUMPBITS(t->bits)
4439 if (e & 16)
4440 {
4441 /* get extra bits for length */
4442 e &= 15;
4443 c = t->base + ((uInt)b & inflate_mask[e]);
4444 DUMPBITS(e)
4445 Tracevv((stderr, "inflate: * length %u\n", c));
4446
4447 /* decode distance base of block to copy */
4448 GRABBITS(15); /* max bits for distance code */
4449 e = (t = td + ((uInt)b & md))->exop;
4450 do {
4451 DUMPBITS(t->bits)
4452 if (e & 16)
4453 {
4454 /* get extra bits to add to distance base */
4455 e &= 15;
4456 GRABBITS(e) /* get extra bits (up to 13) */
4457 d = t->base + ((uInt)b & inflate_mask[e]);
4458 DUMPBITS(e)
4459 Tracevv((stderr, "inflate: * distance %u\n", d));
4460
4461 /* do the copy */
4462 m -= c;
4463 if ((uInt)(q - s->window) >= d) /* offset before dest */
4464 { /* just copy */
4465 r = q - d;
4466 *q++ = *r++; c--; /* minimum count is three, */
4467 *q++ = *r++; c--; /* so unroll loop a little */
4468 }
4469 else /* else offset after destination */
4470 {
4471 e = d - (q - s->window); /* bytes from offset to end */
4472 r = s->end - e; /* pointer to offset */
4473 if (c > e) /* if source crosses, */
4474 {
4475 c -= e; /* copy to end of window */
4476 do {
4477 *q++ = *r++;
4478 } while (--e);
4479 r = s->window; /* copy rest from start of window */
4480 }
4481 }
4482 do { /* copy all or what's left */
4483 *q++ = *r++;
4484 } while (--c);
4485 break;
4486 }
4487 else if ((e & 64) == 0)
4488 e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
4489 else
4490 {
4491 z->msg = "invalid distance code";
4492 UNGRAB
4493 UPDATE
4494 return Z_DATA_ERROR;
4495 }
4496 } while (1);
4497 break;
4498 }
4499 if ((e & 64) == 0)
4500 {
4501 if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
4502 {
4503 DUMPBITS(t->bits)
4504 Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4505 "inflate: * literal '%c'\n" :
4506 "inflate: * literal 0x%02x\n", t->base));
4507 *q++ = (Byte)t->base;
4508 m--;
4509 break;
4510 }
4511 }
4512 else if (e & 32)
4513 {
4514 Tracevv((stderr, "inflate: * end of block\n"));
4515 UNGRAB
4516 UPDATE
4517 return Z_STREAM_END;
4518 }
4519 else
4520 {
4521 z->msg = "invalid literal/length code";
4522 UNGRAB
4523 UPDATE
4524 return Z_DATA_ERROR;
4525 }
4526 } while (1);
4527 } while (m >= 258 && n >= 10);
4528
4529 /* not enough input or output--restore pointers and return */
4530 UNGRAB
4531 UPDATE
4532 return Z_OK;
4533}
4534
4535
4536/*+++++*/
4537/* zutil.c -- target dependent utility functions for the compression library
4538 * Copyright (C) 1995 Jean-loup Gailly.
4539 * For conditions of distribution and use, see copyright notice in zlib.h
4540 */
4541
4542/* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */
4543
4544char *zlib_version = ZLIB_VERSION;
4545
4546char *z_errmsg[] = {
4547"stream end", /* Z_STREAM_END 1 */
4548"", /* Z_OK 0 */
4549"file error", /* Z_ERRNO (-1) */
4550"stream error", /* Z_STREAM_ERROR (-2) */
4551"data error", /* Z_DATA_ERROR (-3) */
4552"insufficient memory", /* Z_MEM_ERROR (-4) */
4553"buffer error", /* Z_BUF_ERROR (-5) */
4554""};
4555
4556
4557/*+++++*/
4558/* adler32.c -- compute the Adler-32 checksum of a data stream
4559 * Copyright (C) 1995 Mark Adler
4560 * For conditions of distribution and use, see copyright notice in zlib.h
4561 */
4562
4563/* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */
4564
4565#define BASE 65521L /* largest prime smaller than 65536 */
4566#define NMAX 5552
4567/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
4568
4569#define DO1(buf) {s1 += *buf++; s2 += s1;}
4570#define DO2(buf) DO1(buf); DO1(buf);
4571#define DO4(buf) DO2(buf); DO2(buf);
4572#define DO8(buf) DO4(buf); DO4(buf);
4573#define DO16(buf) DO8(buf); DO8(buf);
4574
4575/* ========================================================================= */
4576uLong adler32(adler, buf, len)
4577 uLong adler;
4578 Bytef *buf;
4579 uInt len;
4580{
5c36219d
AT
4581 uLong s1 = adler & 0xffff;
4582 uLong s2 = (adler >> 16) & 0xffff;
861c20b4
PM
4583 int k;
4584
4585 if (buf == Z_NULL) return 1L;
4586
4587 while (len > 0) {
4588 k = len < NMAX ? len : NMAX;
4589 len -= k;
4590 while (k >= 16) {
4591 DO16(buf);
4592 k -= 16;
4593 }
4594 if (k != 0) do {
4595 DO1(buf);
4596 } while (--k);
4597 s1 %= BASE;
4598 s2 %= BASE;
4599 }
4600 return (s2 << 16) | s1;
4601}