Rename "desirability" to "preference" (much less awkward), with the
[match/match.git] / program / CS2MinCostFlow.hs
CommitLineData
fd0d2377
MM
1module CS2MinCostFlow (minCostFlow) where
2import IMinCostFlow
3import IOStuff
4import System.IO.Unsafe
5import Data.Graph.Inductive.Graph
6import Data.Array.IArray
7import Data.List
7b8c0e4e
MM
8
9#if __GLASGOW_HASKELL__ <= 606
10(*) `on` f = \x y -> f x * f y
11#else
fd0d2377 12import Data.Function
7b8c0e4e 13#endif
fd0d2377
MM
14
15-- Configure the path to cs2.exe relative to the program/ directory here.
16cs2cmd = "./cs2.exe"
17
18runCS2 :: String -> String
19-- Using unsafePerformIO is non-ideal, but it gives a consistent interface
20-- for the min-cost flow function.
21runCS2 inData = unsafePerformIO (interactWithCommand cs2cmd inData)
22
23data MCFEdge i f c = MCFEdge {
24 eFrom :: Node,
25 eTo :: Node,
26 eCost :: c,
27 eMIdx :: Maybe i,
28 eCap :: f
29} deriving (Eq, Ord)
30
31round2 :: Real a => a -> Int
32round2 x = fromInteger (round (toRational x))
33
34minCostFlow :: MinCostFlowImpl
35minCostFlow idxBounds edgeIdx edgeCap edgeCost theGraph (source, sink) =
36 let
37 (nLo, nHi) = nodeRange theGraph
38 theEdges = labEdges theGraph
39 -- HACK: Add a highly negative-cost edge from sink to
40 -- source to get CS2 to compute a max flow.
41 edges2 = MCFEdge sink source (-100000) Nothing 10000 :
42 map (\(n1, n2, l) -> MCFEdge n1 n2 (edgeCost l) (Just (edgeIdx l)) (edgeCap l))
43 theEdges
44 -- HACK: Round capacities and costs to integers so CS2 can
45 -- handle them. The proposal matcher's capacities are integers,
46 -- and its costs are so large that the error should be insignificant.
47 inData = "p min " ++ show (nHi + 1 - nLo) ++ " " ++ show (length edges2) ++ "\n"
48 ++ "n 1 0\n" -- Dummy node description to make CS2 parser happy.
49 ++ concatMap (\(MCFEdge n1 n2 cost _ cap) ->
50 "a " ++ show (n1 - nLo + 1) ++ " " ++ show (n2 - nLo + 1)
51 ++ " 0 " ++ show (round2 cap)
52 ++ " " ++ show (round2 cost) ++ "\n")
53 edges2
54 outData = runCS2 inData
55 -- Unfortunately CS2 doesn't support edge ID numbers, so we
56 -- have to manually apply the "flow items" it produced to the
57 -- appropriate edges in order of increasing cost.
58 -- Extract ((n1, n2), f) tuples from the output.
59 flowItems = concatMap (\l -> let w:ws = words l in
60 if w == "f"
61 then let
62 [n1s, n2s, fs] = ws
63 n1 = (read n1s :: Int) - 1 + nLo
64 n2 = (read n2s :: Int) - 1 + nLo
65 fv = fromInteger (toInteger (read fs :: Int))
66 in [((n1, n2), fv)]
67 else []
68 ) (lines outData)
69 -- Total the flow for each node pair (n1, n2) to simplify matters.
70 flowGroups = groupBy ((==) `on` fst) (sort flowItems)
71 npFlows = map (\l@((n12, _):_) ->
72 (n12, sum $ map snd l)) flowGroups
73 applyFlows fis [] = case fis of
74 [] -> []
75 _ -> error "CS2MinCostFlow: some flow items could not be applied"
76 applyFlows fis es@(e@(MCFEdge n1 n2 _ mi cap):moreEs) =
77 let (ef, fisLeft) = case fis of
78 -- Note to self: One can't test equality in a
79 -- pattern by reusing a variable name. Use a
80 -- guard instead.
81 ((fn1, fn2), fv):moreFis | fn1 == n1 && fn2 == n2 ->
82 -- This edge gets (min f cap) flow.
83 (min fv cap, if fv > cap
84 then ((n1, n2), fv - cap) : moreFis
85 else moreFis)
86 _ -> (0, fis) -- No flow for this edge.
87 in (mi, ef) : applyFlows fisLeft moreEs
88 theEdgeFlows = applyFlows npFlows (sort edges2)
89 -- Get rid of the flow on our hack edge.
90 realEdgeFlows = concatMap (\(mi, ef) -> case mi of
91 Just i -> [(i, ef)]
92 Nothing -> []
93 ) theEdgeFlows
94 in array idxBounds realEdgeFlows