/* -*- c-file-style: "linux" -*- * * Copyright (C) 1996-2001 by Andrew Tridgell * Copyright (C) Paul Mackerras 1996 * Copyright (C) 2001, 2002 by Martin Pool * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /** * @file io.c * * Socket and pipe I/O utilities used in rsync. * * rsync provides its own multiplexing system, which is used to send * stderr and stdout over a single socket. We need this because * stdout normally carries the binary data stream, and stderr all our * error messages. * * For historical reasons this is off during the start of the * connection, but it's switched on quite early using * io_start_multiplex_out() and io_start_multiplex_in(). **/ #include "rsync.h" /** If no timeout is specified then use a 60 second select timeout */ #define SELECT_TIMEOUT 60 extern int bwlimit; extern size_t bwlimit_writemax; extern int verbose; extern int io_timeout; extern int am_server; extern int am_daemon; extern int am_sender; extern int eol_nulls; extern int checksum_seed; extern int protocol_version; extern char *remote_filesfrom_file; extern struct stats stats; const char phase_unknown[] = "unknown"; int select_timeout = SELECT_TIMEOUT; int batch_fd = -1; int batch_gen_fd = -1; /** * The connection might be dropped at some point; perhaps because the * remote instance crashed. Just giving the offset on the stream is * not very helpful. So instead we try to make io_phase_name point to * something useful. * * For buffered/multiplexed I/O these names will be somewhat * approximate; perhaps for ease of support we would rather make the * buffer always flush when a single application-level I/O finishes. * * @todo Perhaps we want some simple stack functionality, but there's * no need to overdo it. **/ const char *io_write_phase = phase_unknown; const char *io_read_phase = phase_unknown; /** Ignore EOF errors while reading a module listing if the remote version is 24 or less. */ int kludge_around_eof = False; int msg_fd_in = -1; int msg_fd_out = -1; static int io_multiplexing_out; static int io_multiplexing_in; static int sock_f_in = -1; static int sock_f_out = -1; static time_t last_io; static int no_flush; static int write_batch_monitor_in = -1; static int write_batch_monitor_out = -1; static int io_filesfrom_f_in = -1; static int io_filesfrom_f_out = -1; static char io_filesfrom_buf[2048]; static char *io_filesfrom_bp; static char io_filesfrom_lastchar; static int io_filesfrom_buflen; static void read_loop(int fd, char *buf, size_t len); struct redo_list { struct redo_list *next; int num; }; static struct redo_list *redo_list_head; static struct redo_list *redo_list_tail; struct msg_list { struct msg_list *next; char *buf; int len; }; static struct msg_list *msg_list_head; static struct msg_list *msg_list_tail; static void redo_list_add(int num) { struct redo_list *rl; if (!(rl = new(struct redo_list))) exit_cleanup(RERR_MALLOC); rl->next = NULL; rl->num = num; if (redo_list_tail) redo_list_tail->next = rl; else redo_list_head = rl; redo_list_tail = rl; } static void check_timeout(void) { time_t t; if (!io_timeout) return; if (!last_io) { last_io = time(NULL); return; } t = time(NULL); if (t - last_io >= io_timeout) { if (!am_server && !am_daemon) { rprintf(FERROR, "io timeout after %d seconds - exiting\n", (int)(t-last_io)); } exit_cleanup(RERR_TIMEOUT); } } /* Note the fds used for the main socket (which might really be a pipe * for a local transfer, but we can ignore that). */ void io_set_sock_fds(int f_in, int f_out) { sock_f_in = f_in; sock_f_out = f_out; } /** Setup the fd used to receive MSG_* messages. Only needed when * we're the generator because the sender and receiver both use the * multiplexed I/O setup. */ void set_msg_fd_in(int fd) { msg_fd_in = fd; } /** Setup the fd used to send our MSG_* messages. Only needed when * we're the receiver because the generator and the sender both use * the multiplexed I/O setup. */ void set_msg_fd_out(int fd) { msg_fd_out = fd; set_nonblocking(msg_fd_out); } /* Add a message to the pending MSG_* list. */ static void msg_list_add(int code, char *buf, int len) { struct msg_list *ml; if (!(ml = new(struct msg_list))) exit_cleanup(RERR_MALLOC); ml->next = NULL; if (!(ml->buf = new_array(char, len+4))) exit_cleanup(RERR_MALLOC); SIVAL(ml->buf, 0, ((code+MPLEX_BASE)<<24) | len); memcpy(ml->buf+4, buf, len); ml->len = len+4; if (msg_list_tail) msg_list_tail->next = ml; else msg_list_head = ml; msg_list_tail = ml; } void send_msg(enum msgcode code, char *buf, int len) { msg_list_add(code, buf, len); msg_list_push(NORMAL_FLUSH); } /** Read a message from the MSG_* fd and dispatch it. This is only * called by the generator. */ static void read_msg_fd(void) { char buf[2048]; size_t n; int fd = msg_fd_in; int tag, len; /* Temporarily disable msg_fd_in. This is needed to avoid looping back * to this routine from read_timeout() and writefd_unbuffered(). */ msg_fd_in = -1; read_loop(fd, buf, 4); tag = IVAL(buf, 0); len = tag & 0xFFFFFF; tag = (tag >> 24) - MPLEX_BASE; switch (tag) { case MSG_DONE: if (len != 0) { rprintf(FERROR, "invalid message %d:%d\n", tag, len); exit_cleanup(RERR_STREAMIO); } redo_list_add(-1); break; case MSG_REDO: if (len != 4) { rprintf(FERROR, "invalid message %d:%d\n", tag, len); exit_cleanup(RERR_STREAMIO); } read_loop(fd, buf, 4); redo_list_add(IVAL(buf,0)); break; case MSG_INFO: case MSG_ERROR: case MSG_LOG: while (len) { n = len; if (n >= sizeof buf) n = sizeof buf - 1; read_loop(fd, buf, n); rwrite((enum logcode)tag, buf, n); len -= n; } break; default: rprintf(FERROR, "unknown message %d:%d\n", tag, len); exit_cleanup(RERR_STREAMIO); } msg_fd_in = fd; } /* Try to push messages off the list onto the wire. If we leave with more * to do, return 0. On error, return -1. If everything flushed, return 1. * This is only active in the receiver. */ int msg_list_push(int flush_it_all) { static int written = 0; struct timeval tv; fd_set fds; if (msg_fd_out < 0) return -1; while (msg_list_head) { struct msg_list *ml = msg_list_head; int n = write(msg_fd_out, ml->buf + written, ml->len - written); if (n < 0) { if (errno == EINTR) continue; if (errno != EWOULDBLOCK && errno != EAGAIN) return -1; if (!flush_it_all) return 0; FD_ZERO(&fds); FD_SET(msg_fd_out, &fds); tv.tv_sec = select_timeout; tv.tv_usec = 0; if (!select(msg_fd_out+1, NULL, &fds, NULL, &tv)) check_timeout(); } else if ((written += n) == ml->len) { free(ml->buf); msg_list_head = ml->next; if (!msg_list_head) msg_list_tail = NULL; free(ml); written = 0; } } return 1; } int get_redo_num(void) { struct redo_list *next; int num; while (!redo_list_head) read_msg_fd(); num = redo_list_head->num; next = redo_list_head->next; free(redo_list_head); redo_list_head = next; if (!next) redo_list_tail = NULL; return num; } /** * When we're the receiver and we have a local --files-from list of names * that needs to be sent over the socket to the sender, we have to do two * things at the same time: send the sender a list of what files we're * processing and read the incoming file+info list from the sender. We do * this by augmenting the read_timeout() function to copy this data. It * uses the io_filesfrom_buf to read a block of data from f_in (when it is * ready, since it might be a pipe) and then blast it out f_out (when it * is ready to receive more data). */ void io_set_filesfrom_fds(int f_in, int f_out) { io_filesfrom_f_in = f_in; io_filesfrom_f_out = f_out; io_filesfrom_bp = io_filesfrom_buf; io_filesfrom_lastchar = '\0'; io_filesfrom_buflen = 0; } /** * It's almost always an error to get an EOF when we're trying to read * from the network, because the protocol is self-terminating. * * However, there is one unfortunate cases where it is not, which is * rsync <2.4.6 sending a list of modules on a server, since the list * is terminated by closing the socket. So, for the section of the * program where that is a problem (start_socket_client), * kludge_around_eof is True and we just exit. */ static void whine_about_eof(int fd) { if (kludge_around_eof && fd == sock_f_in) exit_cleanup(0); rprintf(FERROR, RSYNC_NAME ": connection unexpectedly closed " "(%.0f bytes received so far) [%s]\n", (double)stats.total_read, who_am_i()); exit_cleanup(RERR_STREAMIO); } /** * Read from a socket with I/O timeout. return the number of bytes * read. If no bytes can be read then exit, never return a number <= 0. * * TODO: If the remote shell connection fails, then current versions * actually report an "unexpected EOF" error here. Since it's a * fairly common mistake to try to use rsh when ssh is required, we * should trap that: if we fail to read any data at all, we should * give a better explanation. We can tell whether the connection has * started by looking e.g. at whether the remote version is known yet. */ static int read_timeout(int fd, char *buf, size_t len) { int n, ret = 0; io_flush(NORMAL_FLUSH); while (ret == 0) { /* until we manage to read *something* */ fd_set r_fds, w_fds; struct timeval tv; int maxfd = fd; int count; FD_ZERO(&r_fds); FD_ZERO(&w_fds); FD_SET(fd, &r_fds); if (msg_fd_in >= 0) { FD_SET(msg_fd_in, &r_fds); if (msg_fd_in > maxfd) maxfd = msg_fd_in; } else if (msg_list_head) { FD_SET(msg_fd_out, &w_fds); if (msg_fd_out > maxfd) maxfd = msg_fd_out; } if (io_filesfrom_f_out >= 0) { int new_fd; if (io_filesfrom_buflen == 0) { if (io_filesfrom_f_in >= 0) { FD_SET(io_filesfrom_f_in, &r_fds); new_fd = io_filesfrom_f_in; } else { io_filesfrom_f_out = -1; new_fd = -1; } } else { FD_SET(io_filesfrom_f_out, &w_fds); new_fd = io_filesfrom_f_out; } if (new_fd > maxfd) maxfd = new_fd; } tv.tv_sec = select_timeout; tv.tv_usec = 0; errno = 0; count = select(maxfd + 1, &r_fds, &w_fds, NULL, &tv); if (count <= 0) { if (errno == EBADF) exit_cleanup(RERR_SOCKETIO); check_timeout(); continue; } if (msg_fd_in >= 0 && FD_ISSET(msg_fd_in, &r_fds)) read_msg_fd(); else if (msg_list_head && FD_ISSET(msg_fd_out, &w_fds)) msg_list_push(NORMAL_FLUSH); if (io_filesfrom_f_out >= 0) { if (io_filesfrom_buflen) { if (FD_ISSET(io_filesfrom_f_out, &w_fds)) { int l = write(io_filesfrom_f_out, io_filesfrom_bp, io_filesfrom_buflen); if (l > 0) { if (!(io_filesfrom_buflen -= l)) io_filesfrom_bp = io_filesfrom_buf; else io_filesfrom_bp += l; } else { /* XXX should we complain? */ io_filesfrom_f_out = -1; } } } else if (io_filesfrom_f_in >= 0) { if (FD_ISSET(io_filesfrom_f_in, &r_fds)) { int l = read(io_filesfrom_f_in, io_filesfrom_buf, sizeof io_filesfrom_buf); if (l <= 0) { /* Send end-of-file marker */ io_filesfrom_buf[0] = '\0'; io_filesfrom_buf[1] = '\0'; io_filesfrom_buflen = io_filesfrom_lastchar? 2 : 1; io_filesfrom_f_in = -1; } else { if (!eol_nulls) { char *s = io_filesfrom_buf + l; /* Transform CR and/or LF into '\0' */ while (s-- > io_filesfrom_buf) { if (*s == '\n' || *s == '\r') *s = '\0'; } } if (!io_filesfrom_lastchar) { /* Last buf ended with a '\0', so don't * let this buf start with one. */ while (l && !*io_filesfrom_bp) io_filesfrom_bp++, l--; } if (!l) io_filesfrom_bp = io_filesfrom_buf; else { char *f = io_filesfrom_bp; char *t = f; char *eob = f + l; /* Eliminate any multi-'\0' runs. */ while (f != eob) { if (!(*t++ = *f++)) { while (f != eob && !*f) f++, l--; } } io_filesfrom_lastchar = f[-1]; } io_filesfrom_buflen = l; } } } } if (!FD_ISSET(fd, &r_fds)) continue; n = read(fd, buf, len); if (n <= 0) { if (n == 0) whine_about_eof(fd); /* Doesn't return. */ if (errno == EINTR || errno == EWOULDBLOCK || errno == EAGAIN) continue; /* Don't write errors on a dead socket. */ if (fd == sock_f_in) close_multiplexing_out(); rsyserr(FERROR, errno, "read error"); exit_cleanup(RERR_STREAMIO); } buf += n; len -= n; ret += n; if (io_timeout && fd == sock_f_in) last_io = time(NULL); } return ret; } /** * Read a line into the "fname" buffer (which must be at least MAXPATHLEN * characters long). */ int read_filesfrom_line(int fd, char *fname) { char ch, *s, *eob = fname + MAXPATHLEN - 1; int cnt; int reading_remotely = remote_filesfrom_file != NULL; int nulls = eol_nulls || reading_remotely; start: s = fname; while (1) { cnt = read(fd, &ch, 1); if (cnt < 0 && (errno == EWOULDBLOCK || errno == EINTR || errno == EAGAIN)) { struct timeval tv; fd_set fds; FD_ZERO(&fds); FD_SET(fd, &fds); tv.tv_sec = select_timeout; tv.tv_usec = 0; if (!select(fd+1, &fds, NULL, NULL, &tv)) check_timeout(); continue; } if (cnt != 1) break; if (nulls? !ch : (ch == '\r' || ch == '\n')) { /* Skip empty lines if reading locally. */ if (!reading_remotely && s == fname) continue; break; } if (s < eob) *s++ = ch; } *s = '\0'; /* Dump comments. */ if (*fname == '#' || *fname == ';') goto start; return s - fname; } static char *iobuf_out; static int iobuf_out_cnt; void io_start_buffering_out(void) { if (iobuf_out) return; if (!(iobuf_out = new_array(char, IO_BUFFER_SIZE))) out_of_memory("io_start_buffering_out"); iobuf_out_cnt = 0; } static char *iobuf_in; static size_t iobuf_in_siz; void io_start_buffering_in(void) { if (iobuf_in) return; iobuf_in_siz = 2 * IO_BUFFER_SIZE; if (!(iobuf_in = new_array(char, iobuf_in_siz))) out_of_memory("io_start_buffering_in"); } void io_end_buffering(void) { io_flush(NORMAL_FLUSH); if (!io_multiplexing_out) { free(iobuf_out); iobuf_out = NULL; } } /** * Continue trying to read len bytes - don't return until len has been * read. **/ static void read_loop(int fd, char *buf, size_t len) { while (len) { int n = read_timeout(fd, buf, len); buf += n; len -= n; } } /** * Read from the file descriptor handling multiplexing - return number * of bytes read. * * Never returns <= 0. */ static int readfd_unbuffered(int fd, char *buf, size_t len) { static size_t remaining; static size_t iobuf_in_ndx; int tag, ret = 0; char line[1024]; if (!iobuf_in || fd != sock_f_in) return read_timeout(fd, buf, len); if (!io_multiplexing_in && remaining == 0) { remaining = read_timeout(fd, iobuf_in, iobuf_in_siz); iobuf_in_ndx = 0; } while (ret == 0) { if (remaining) { len = MIN(len, remaining); memcpy(buf, iobuf_in + iobuf_in_ndx, len); iobuf_in_ndx += len; remaining -= len; ret = len; break; } read_loop(fd, line, 4); tag = IVAL(line, 0); remaining = tag & 0xFFFFFF; tag = (tag >> 24) - MPLEX_BASE; switch (tag) { case MSG_DATA: if (remaining > iobuf_in_siz) { if (!(iobuf_in = realloc_array(iobuf_in, char, remaining))) out_of_memory("readfd_unbuffered"); iobuf_in_siz = remaining; } read_loop(fd, iobuf_in, remaining); iobuf_in_ndx = 0; break; case MSG_INFO: case MSG_ERROR: if (remaining >= sizeof line) { rprintf(FERROR, "multiplexing overflow %d:%ld\n\n", tag, (long)remaining); exit_cleanup(RERR_STREAMIO); } read_loop(fd, line, remaining); rwrite((enum logcode)tag, line, remaining); remaining = 0; break; default: rprintf(FERROR, "unexpected tag %d\n", tag); exit_cleanup(RERR_STREAMIO); } } if (remaining == 0) io_flush(NORMAL_FLUSH); return ret; } /** * Do a buffered read from @p fd. Don't return until all @p n bytes * have been read. If all @p n can't be read then exit with an * error. **/ static void readfd(int fd, char *buffer, size_t N) { int ret; size_t total = 0; while (total < N) { ret = readfd_unbuffered(fd, buffer + total, N-total); total += ret; } if (fd == write_batch_monitor_in) { if ((size_t)write(batch_fd, buffer, total) != total) exit_cleanup(RERR_FILEIO); } if (fd == sock_f_in) stats.total_read += total; } int32 read_int(int f) { char b[4]; int32 ret; readfd(f,b,4); ret = IVAL(b,0); if (ret == (int32)0xffffffff) return -1; return ret; } int64 read_longint(int f) { int64 ret; char b[8]; ret = read_int(f); if ((int32)ret != (int32)0xffffffff) return ret; #ifdef INT64_IS_OFF_T if (sizeof (int64) < 8) { rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n"); exit_cleanup(RERR_UNSUPPORTED); } #endif readfd(f,b,8); ret = IVAL(b,0) | (((int64)IVAL(b,4))<<32); return ret; } void read_buf(int f,char *buf,size_t len) { readfd(f,buf,len); } void read_sbuf(int f,char *buf,size_t len) { readfd(f, buf, len); buf[len] = 0; } unsigned char read_byte(int f) { unsigned char c; readfd(f, (char *)&c, 1); return c; } /** * Sleep after writing to limit I/O bandwidth usage. * * @todo Rather than sleeping after each write, it might be better to * use some kind of averaging. The current algorithm seems to always * use a bit less bandwidth than specified, because it doesn't make up * for slow periods. But arguably this is a feature. In addition, we * ought to take the time used to write the data into account. * * During some phases of big transfers (file FOO is uptodate) this is * called with a small bytes_written every time. As the kernel has to * round small waits up to guarantee that we actually wait at least the * requested number of microseconds, this can become grossly inaccurate. * We therefore keep track of the bytes we've written over time and only * sleep when the accumulated delay is at least 1 tenth of a second. **/ static void sleep_for_bwlimit(int bytes_written) { static struct timeval prior_tv; static long total_written = 0; struct timeval tv, start_tv; long elapsed_usec, sleep_usec; #define ONE_SEC 1000000L /* # of microseconds in a second */ if (!bwlimit) return; total_written += bytes_written; gettimeofday(&start_tv, NULL); if (prior_tv.tv_sec) { elapsed_usec = (start_tv.tv_sec - prior_tv.tv_sec) * ONE_SEC + (start_tv.tv_usec - prior_tv.tv_usec); total_written -= elapsed_usec * bwlimit / (ONE_SEC/1024); if (total_written < 0) total_written = 0; } sleep_usec = total_written * (ONE_SEC/1024) / bwlimit; if (sleep_usec < ONE_SEC / 10) { prior_tv = start_tv; return; } tv.tv_sec = sleep_usec / ONE_SEC; tv.tv_usec = sleep_usec % ONE_SEC; select(0, NULL, NULL, NULL, &tv); gettimeofday(&prior_tv, NULL); elapsed_usec = (prior_tv.tv_sec - start_tv.tv_sec) * ONE_SEC + (prior_tv.tv_usec - start_tv.tv_usec); total_written = (sleep_usec - elapsed_usec) * bwlimit / (ONE_SEC/1024); } /* Write len bytes to the file descriptor fd, looping as necessary to get * the job done and also (in the generator) reading any data on msg_fd_in * (to avoid deadlock). * * This function underlies the multiplexing system. The body of the * application never calls this function directly. */ static void writefd_unbuffered(int fd,char *buf,size_t len) { size_t n, total = 0; fd_set w_fds, r_fds; int maxfd, count, ret; struct timeval tv; no_flush++; while (total < len) { FD_ZERO(&w_fds); FD_SET(fd,&w_fds); maxfd = fd; if (msg_fd_in >= 0) { FD_ZERO(&r_fds); FD_SET(msg_fd_in,&r_fds); if (msg_fd_in > maxfd) maxfd = msg_fd_in; } tv.tv_sec = select_timeout; tv.tv_usec = 0; errno = 0; count = select(maxfd + 1, msg_fd_in >= 0 ? &r_fds : NULL, &w_fds, NULL, &tv); if (count <= 0) { if (count < 0 && errno == EBADF) exit_cleanup(RERR_SOCKETIO); check_timeout(); continue; } if (msg_fd_in >= 0 && FD_ISSET(msg_fd_in, &r_fds)) read_msg_fd(); if (!FD_ISSET(fd, &w_fds)) continue; n = len - total; if (bwlimit && n > bwlimit_writemax) n = bwlimit_writemax; ret = write(fd, buf + total, n); if (ret <= 0) { if (ret < 0) { if (errno == EINTR) continue; if (errno == EWOULDBLOCK || errno == EAGAIN) { msleep(1); continue; } } /* Don't try to write errors back across the stream. */ if (fd == sock_f_out) close_multiplexing_out(); rsyserr(FERROR, errno, "writefd_unbuffered failed to write %ld bytes: phase \"%s\" [%s]", (long)len, io_write_phase, who_am_i()); /* If the other side is sending us error messages, try * to grab any messages they sent before they died. */ while (fd == sock_f_out && io_multiplexing_in) { io_timeout = 30; readfd_unbuffered(sock_f_in, io_filesfrom_buf, sizeof io_filesfrom_buf); } exit_cleanup(RERR_STREAMIO); } total += ret; if (fd == sock_f_out) { if (io_timeout) last_io = time(NULL); sleep_for_bwlimit(ret); } } no_flush--; } /** * Write an message to a multiplexed stream. If this fails then rsync * exits. **/ static void mplex_write(enum msgcode code, char *buf, size_t len) { char buffer[4096]; size_t n = len; SIVAL(buffer, 0, ((MPLEX_BASE + (int)code)<<24) + len); if (n > sizeof buffer - 4) n = sizeof buffer - 4; memcpy(&buffer[4], buf, n); writefd_unbuffered(sock_f_out, buffer, n+4); len -= n; buf += n; if (len) writefd_unbuffered(sock_f_out, buf, len); } void io_flush(int flush_it_all) { msg_list_push(flush_it_all); if (!iobuf_out_cnt || no_flush) return; if (io_multiplexing_out) mplex_write(MSG_DATA, iobuf_out, iobuf_out_cnt); else writefd_unbuffered(sock_f_out, iobuf_out, iobuf_out_cnt); iobuf_out_cnt = 0; } static void writefd(int fd,char *buf,size_t len) { if (fd == msg_fd_out) { rprintf(FERROR, "Internal error: wrong write used in receiver.\n"); exit_cleanup(RERR_PROTOCOL); } if (fd == sock_f_out) stats.total_written += len; if (fd == write_batch_monitor_out) { if ((size_t)write(batch_fd, buf, len) != len) exit_cleanup(RERR_FILEIO); } if (!iobuf_out || fd != sock_f_out) { writefd_unbuffered(fd, buf, len); return; } while (len) { int n = MIN((int)len, IO_BUFFER_SIZE - iobuf_out_cnt); if (n > 0) { memcpy(iobuf_out+iobuf_out_cnt, buf, n); buf += n; len -= n; iobuf_out_cnt += n; } if (iobuf_out_cnt == IO_BUFFER_SIZE) io_flush(NORMAL_FLUSH); } } void write_int(int f,int32 x) { char b[4]; SIVAL(b,0,x); writefd(f,b,4); } void write_int_named(int f, int32 x, const char *phase) { io_write_phase = phase; write_int(f, x); io_write_phase = phase_unknown; } /* * Note: int64 may actually be a 32-bit type if ./configure couldn't find any * 64-bit types on this platform. */ void write_longint(int f, int64 x) { char b[8]; if (x <= 0x7FFFFFFF) { write_int(f, (int)x); return; } #ifdef INT64_IS_OFF_T if (sizeof (int64) < 8) { rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n"); exit_cleanup(RERR_UNSUPPORTED); } #endif write_int(f, (int32)0xFFFFFFFF); SIVAL(b,0,(x&0xFFFFFFFF)); SIVAL(b,4,((x>>32)&0xFFFFFFFF)); writefd(f,b,8); } void write_buf(int f,char *buf,size_t len) { writefd(f,buf,len); } /** Write a string to the connection */ void write_sbuf(int f, char *buf) { writefd(f, buf, strlen(buf)); } void write_byte(int f,unsigned char c) { writefd(f, (char *)&c, 1); } /** * Read a line of up to @p maxlen characters into @p buf (not counting * the trailing null). Strips the (required) trailing newline and all * carriage returns. * * @return 1 for success; 0 for I/O error or truncation. **/ int read_line(int f, char *buf, size_t maxlen) { while (maxlen) { buf[0] = 0; read_buf(f, buf, 1); if (buf[0] == 0) return 0; if (buf[0] == '\n') break; if (buf[0] != '\r') { buf++; maxlen--; } } *buf = '\0'; return maxlen > 0; } void io_printf(int fd, const char *format, ...) { va_list ap; char buf[1024]; int len; va_start(ap, format); len = vsnprintf(buf, sizeof buf, format, ap); va_end(ap); if (len < 0) exit_cleanup(RERR_STREAMIO); write_sbuf(fd, buf); } /** Setup for multiplexing a MSG_* stream with the data stream. */ void io_start_multiplex_out(void) { io_flush(NORMAL_FLUSH); io_start_buffering_out(); io_multiplexing_out = 1; } /** Setup for multiplexing a MSG_* stream with the data stream. */ void io_start_multiplex_in(void) { io_flush(NORMAL_FLUSH); io_start_buffering_in(); io_multiplexing_in = 1; } /** Write an message to the multiplexed data stream. */ int io_multiplex_write(enum msgcode code, char *buf, size_t len) { if (!io_multiplexing_out) return 0; io_flush(NORMAL_FLUSH); stats.total_written += (len+4); mplex_write(code, buf, len); return 1; } void close_multiplexing_in(void) { io_multiplexing_in = 0; } /** Stop output multiplexing. */ void close_multiplexing_out(void) { io_multiplexing_out = 0; } void start_write_batch(int fd) { write_stream_flags(batch_fd); /* Some communication has already taken place, but we don't * enable batch writing until here so that we can write a * canonical record of the communication even though the * actual communication so far depends on whether a daemon * is involved. */ write_int(batch_fd, protocol_version); write_int(batch_fd, checksum_seed); if (am_sender) write_batch_monitor_out = fd; else write_batch_monitor_in = fd; } void stop_write_batch(void) { write_batch_monitor_out = -1; write_batch_monitor_in = -1; }