/* * Socket and pipe I/O utilities used in rsync. * * Copyright (C) 1996-2001 Andrew Tridgell * Copyright (C) 1996 Paul Mackerras * Copyright (C) 2001, 2002 Martin Pool * Copyright (C) 2003-2009 Wayne Davison * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, visit the http://fsf.org website. */ /* Rsync provides its own multiplexing system, which is used to send * stderr and stdout over a single socket. * * For historical reasons this is off during the start of the * connection, but it's switched on quite early using * io_start_multiplex_out() and io_start_multiplex_in(). */ #include "rsync.h" #include "ifuncs.h" #include "inums.h" /** If no timeout is specified then use a 60 second select timeout */ #define SELECT_TIMEOUT 60 extern int bwlimit; extern size_t bwlimit_writemax; extern int io_timeout; extern int am_server; extern int am_sender; extern int am_receiver; extern int am_generator; extern int msgs2stderr; extern int inc_recurse; extern int io_error; extern int eol_nulls; extern int flist_eof; extern int file_total; extern int file_old_total; extern int list_only; extern int read_batch; extern int compat_flags; extern int protect_args; extern int checksum_seed; extern int protocol_version; extern int remove_source_files; extern int preserve_hard_links; extern BOOL extra_flist_sending_enabled; extern struct stats stats; extern struct file_list *cur_flist; #ifdef ICONV_OPTION extern int filesfrom_convert; extern iconv_t ic_send, ic_recv; #endif int csum_length = SHORT_SUM_LENGTH; /* initial value */ int allowed_lull = 0; int batch_fd = -1; int msgdone_cnt = 0; int forward_flist_data = 0; BOOL flist_receiving_enabled = False; /* Ignore an EOF error if non-zero. See whine_about_eof(). */ int kluge_around_eof = 0; int sock_f_in = -1; int sock_f_out = -1; int64 total_data_read = 0; int64 total_data_written = 0; static struct { xbuf in, out, msg; int in_fd; int out_fd; /* Both "out" and "msg" go to this fd. */ int in_multiplexed; unsigned out_empty_len; size_t raw_data_header_pos; /* in the out xbuf */ size_t raw_flushing_ends_before; /* in the out xbuf */ size_t raw_input_ends_before; /* in the in xbuf */ } iobuf = { .in_fd = -1, .out_fd = -1 }; static time_t last_io_in; static time_t last_io_out; static int write_batch_monitor_in = -1; static int write_batch_monitor_out = -1; static int ff_forward_fd = -1; static int ff_reenable_multiplex = -1; static char ff_lastchar = '\0'; static xbuf ff_xb = EMPTY_XBUF; #ifdef ICONV_OPTION static xbuf iconv_buf = EMPTY_XBUF; #endif static int select_timeout = SELECT_TIMEOUT; static int active_filecnt = 0; static OFF_T active_bytecnt = 0; static int first_message = 1; static char int_byte_extra[64] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* (00 - 3F)/4 */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* (40 - 7F)/4 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* (80 - BF)/4 */ 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, /* (C0 - FF)/4 */ }; /* Our I/O buffers are sized with no bits on in the lowest byte of the "size" * (indeed, our rounding of sizes in 1024-byte units assures more than this). * This allows the code that is storing bytes near the physical end of a * circular buffer to temporarily reduce the buffer's size (in order to make * some storing idioms easier), while also making it simple to restore the * buffer's actual size when the buffer's "pos" wraps around to the start (we * just round the buffer's size up again). */ #define IOBUF_WAS_REDUCED(siz) ((siz) & 0xFF) #define IOBUF_RESTORE_SIZE(siz) (((siz) | 0xFF) + 1) #define IN_MULTIPLEXED (iobuf.in_multiplexed != 0) #define IN_MULTIPLEXED_AND_READY (iobuf.in_multiplexed > 0) #define OUT_MULTIPLEXED (iobuf.out_empty_len != 0) #define PIO_NEED_INPUT (1<<0) /* The *_NEED_* flags are mutually exclusive. */ #define PIO_NEED_OUTROOM (1<<1) #define PIO_NEED_MSGROOM (1<<2) #define PIO_CONSUME_INPUT (1<<4) /* Must becombined with PIO_NEED_INPUT. */ #define PIO_INPUT_AND_CONSUME (PIO_NEED_INPUT | PIO_CONSUME_INPUT) #define PIO_NEED_FLAGS (PIO_NEED_INPUT | PIO_NEED_OUTROOM | PIO_NEED_MSGROOM) #define REMOTE_OPTION_ERROR "rsync: on remote machine: -" #define REMOTE_OPTION_ERROR2 ": unknown option" #define FILESFROM_BUFLEN 2048 enum festatus { FES_SUCCESS, FES_REDO, FES_NO_SEND }; static flist_ndx_list redo_list, hlink_list; static void read_a_msg(void); static void drain_multiplex_messages(void); static void sleep_for_bwlimit(int bytes_written); static void check_timeout(BOOL allow_keepalive) { time_t t, chk; /* On the receiving side, the generator is now the one that decides * when a timeout has occurred. When it is sifting through a lot of * files looking for work, it will be sending keep-alive messages to * the sender, and even though the receiver won't be sending/receiving * anything (not even keep-alive messages), the successful writes to * the sender will keep things going. If the receiver is actively * receiving data, it will ensure that the generator knows that it is * not idle by sending the generator keep-alive messages (since the * generator might be blocked trying to send checksums, it needs to * know that the receiver is active). Thus, as long as one or the * other is successfully doing work, the generator will not timeout. */ if (!io_timeout) return; t = time(NULL); if (allow_keepalive) { /* This may put data into iobuf.msg w/o flushing. */ maybe_send_keepalive(t, 0); } if (!last_io_in) last_io_in = t; if (am_receiver) return; chk = MAX(last_io_out, last_io_in); if (t - chk >= io_timeout) { if (am_server) msgs2stderr = 1; rprintf(FERROR, "[%s] io timeout after %d seconds -- exiting\n", who_am_i(), (int)(t-chk)); exit_cleanup(RERR_TIMEOUT); } } /* It's almost always an error to get an EOF when we're trying to read from the * network, because the protocol is (for the most part) self-terminating. * * There is one case for the receiver when it is at the end of the transfer * (hanging around reading any keep-alive packets that might come its way): if * the sender dies before the generator's kill-signal comes through, we can end * up here needing to loop until the kill-signal arrives. In this situation, * kluge_around_eof will be < 0. * * There is another case for older protocol versions (< 24) where the module * listing was not terminated, so we must ignore an EOF error in that case and * exit. In this situation, kluge_around_eof will be > 0. */ static NORETURN void whine_about_eof(BOOL allow_kluge) { if (kluge_around_eof && allow_kluge) { int i; if (kluge_around_eof > 0) exit_cleanup(0); /* If we're still here after 10 seconds, exit with an error. */ for (i = 10*1000/20; i--; ) msleep(20); } rprintf(FERROR, RSYNC_NAME ": connection unexpectedly closed " "(%s bytes received so far) [%s]\n", big_num(stats.total_read), who_am_i()); exit_cleanup(RERR_STREAMIO); } /* Do a safe read, handling any needed looping and error handling. * Returns the count of the bytes read, which will only be different * from "len" if we encountered an EOF. This routine is not used on * the socket except very early in the transfer. */ static size_t safe_read(int fd, char *buf, size_t len) { size_t got; int n; assert(fd != iobuf.in_fd); n = read(fd, buf, len); if ((size_t)n == len || n == 0) { if (DEBUG_GTE(IO, 2)) rprintf(FINFO, "[%s] safe_read(%d)=%ld\n", who_am_i(), fd, (long)n); return n; } if (n < 0) { if (errno != EINTR && errno != EWOULDBLOCK && errno != EAGAIN) { read_failed: rsyserr(FERROR, errno, "safe_read failed to read %ld bytes [%s]", (long)len, who_am_i()); exit_cleanup(RERR_STREAMIO); } got = 0; } else got = n; while (1) { struct timeval tv; fd_set r_fds, e_fds; int cnt; FD_ZERO(&r_fds); FD_SET(fd, &r_fds); FD_ZERO(&e_fds); FD_SET(fd, &e_fds); tv.tv_sec = select_timeout; tv.tv_usec = 0; cnt = select(fd+1, &r_fds, NULL, &e_fds, &tv); if (cnt <= 0) { if (cnt < 0 && errno == EBADF) { rsyserr(FERROR, errno, "safe_read select failed [%s]", who_am_i()); exit_cleanup(RERR_FILEIO); } if (io_timeout) maybe_send_keepalive(time(NULL), MSK_ALLOW_FLUSH); continue; } /*if (FD_ISSET(fd, &e_fds)) rprintf(FINFO, "select exception on fd %d\n", fd); */ if (FD_ISSET(fd, &r_fds)) { n = read(fd, buf + got, len - got); if (DEBUG_GTE(IO, 2)) rprintf(FINFO, "[%s] safe_read(%d)=%ld\n", who_am_i(), fd, (long)n); if (n == 0) break; if (n < 0) { if (errno == EINTR) continue; goto read_failed; } if ((got += (size_t)n) == len) break; } } return got; } static const char *what_fd_is(int fd) { static char buf[20]; if (fd == sock_f_out) return "socket"; else if (fd == iobuf.out_fd) return "message fd"; else if (fd == batch_fd) return "batch file"; else { snprintf(buf, sizeof buf, "fd %d", fd); return buf; } } /* Do a safe write, handling any needed looping and error handling. * Returns only if everything was successfully written. This routine * is not used on the socket except very early in the transfer. */ static void safe_write(int fd, const char *buf, size_t len) { int n; assert(fd != iobuf.out_fd); n = write(fd, buf, len); if ((size_t)n == len) return; if (n < 0) { if (errno != EINTR && errno != EWOULDBLOCK && errno != EAGAIN) { write_failed: rsyserr(FERROR, errno, "safe_write failed to write %ld bytes to %s [%s]", (long)len, what_fd_is(fd), who_am_i()); exit_cleanup(RERR_STREAMIO); } } else { buf += n; len -= n; } while (len) { struct timeval tv; fd_set w_fds; int cnt; FD_ZERO(&w_fds); FD_SET(fd, &w_fds); tv.tv_sec = select_timeout; tv.tv_usec = 0; cnt = select(fd + 1, NULL, &w_fds, NULL, &tv); if (cnt <= 0) { if (cnt < 0 && errno == EBADF) { rsyserr(FERROR, errno, "safe_write select failed on %s [%s]", what_fd_is(fd), who_am_i()); exit_cleanup(RERR_FILEIO); } if (io_timeout) maybe_send_keepalive(time(NULL), MSK_ALLOW_FLUSH); continue; } if (FD_ISSET(fd, &w_fds)) { n = write(fd, buf, len); if (n < 0) { if (errno == EINTR) continue; goto write_failed; } buf += n; len -= n; } } } /* This is only called when files-from data is known to be available. We read * a chunk of data and put it into the output buffer. */ static void forward_filesfrom_data(void) { int len; len = read(ff_forward_fd, ff_xb.buf + ff_xb.len, ff_xb.size - ff_xb.len); if (len <= 0) { if (len == 0 || errno != EINTR) { /* Send end-of-file marker */ ff_forward_fd = -1; write_buf(iobuf.out_fd, "\0\0", ff_lastchar ? 2 : 1); free_xbuf(&ff_xb); if (ff_reenable_multiplex >= 0) io_start_multiplex_out(ff_reenable_multiplex); } return; } if (DEBUG_GTE(IO, 2)) rprintf(FINFO, "[%s] files-from read=%ld\n", who_am_i(), (long)len); #ifdef ICONV_OPTION len += ff_xb.len; #endif if (!eol_nulls) { char *s = ff_xb.buf + len; /* Transform CR and/or LF into '\0' */ while (s-- > ff_xb.buf) { if (*s == '\n' || *s == '\r') *s = '\0'; } } if (ff_lastchar) ff_xb.pos = 0; else { char *s = ff_xb.buf; /* Last buf ended with a '\0', so don't let this buf start with one. */ while (len && *s == '\0') s++, len--; ff_xb.pos = s - ff_xb.buf; } #ifdef ICONV_OPTION if (filesfrom_convert && len) { char *sob = ff_xb.buf + ff_xb.pos, *s = sob; char *eob = sob + len; int flags = ICB_INCLUDE_BAD | ICB_INCLUDE_INCOMPLETE | ICB_CIRCULAR_OUT; if (ff_lastchar == '\0') flags |= ICB_INIT; /* Convert/send each null-terminated string separately, skipping empties. */ while (s != eob) { if (*s++ == '\0') { ff_xb.len = s - sob - 1; if (iconvbufs(ic_send, &ff_xb, &iobuf.out, flags) < 0) exit_cleanup(RERR_PROTOCOL); /* impossible? */ write_buf(iobuf.out_fd, s-1, 1); /* Send the '\0'. */ while (s != eob && *s == '\0') s++; sob = s; ff_xb.pos = sob - ff_xb.buf; flags |= ICB_INIT; } } if ((ff_xb.len = s - sob) == 0) ff_lastchar = '\0'; else { /* Handle a partial string specially, saving any incomplete chars. */ flags &= ~ICB_INCLUDE_INCOMPLETE; if (iconvbufs(ic_send, &ff_xb, &iobuf.out, flags) < 0) { if (errno == E2BIG) exit_cleanup(RERR_PROTOCOL); /* impossible? */ if (ff_xb.pos) memmove(ff_xb.buf, ff_xb.buf + ff_xb.pos, ff_xb.len); } ff_lastchar = 'x'; /* Anything non-zero. */ } } else #endif if (len) { char *f = ff_xb.buf + ff_xb.pos; char *t = ff_xb.buf; char *eob = f + len; /* Eliminate any multi-'\0' runs. */ while (f != eob) { if (!(*t++ = *f++)) { while (f != eob && *f == '\0') f++; } } ff_lastchar = f[-1]; if ((len = t - ff_xb.buf) != 0) { /* This will not circle back to perform_io() because we only get * called when there is plenty of room in the output buffer. */ write_buf(iobuf.out_fd, ff_xb.buf, len); } } } void reduce_iobuf_size(xbuf *out, size_t new_size) { if (new_size < out->size) { if (DEBUG_GTE(IO, 4)) { const char *name = out == &iobuf.out ? "iobuf.out" : out == &iobuf.msg ? "iobuf.msg" : NULL; if (name) { rprintf(FINFO, "[%s] reduced size of %s (-%d)\n", who_am_i(), name, (int)(out->size - new_size)); } } out->size = new_size; } } void restore_iobuf_size(xbuf *out) { if (IOBUF_WAS_REDUCED(out->size)) { size_t new_size = IOBUF_RESTORE_SIZE(out->size); if (DEBUG_GTE(IO, 4)) { const char *name = out == &iobuf.out ? "iobuf.out" : out == &iobuf.msg ? "iobuf.msg" : NULL; if (name) { rprintf(FINFO, "[%s] restored size of %s (+%d)\n", who_am_i(), name, (int)(new_size - out->size)); } } out->size = new_size; } } /* Perform buffered input and/or output until specified conditions are met. * When given a "needed" read or write request, this returns without doing any * I/O if the needed input bytes or write space is already available. Once I/O * is needed, this will try to do whatever reading and/or writing is currently * possible, up to the maximum buffer allowances, no matter if this is a read * or write request. However, the I/O stops as soon as the required input * bytes or output space is available. If this is not a read request, the * routine may also do some advantageous reading of messages from a multiplexed * input source (which ensures that we don't jam up with everyone in their * "need to write" code and nobody reading the accumulated data that would make * writing possible). * * The iobuf.in, .out and .msg buffers are all circular. Callers need to be * aware that some data copies will need to be split when the bytes wrap around * from the end to the start. In order to help make writing into the output * buffers easier for some operations (such as the use of SIVAL() into the * buffer) a buffer may be temporarily shortened by a small amount, but the * original size will be automatically restored when the .pos wraps to the * start. See also the 3 raw_* iobuf vars that are used in the handling of * MSG_DATA bytes as they are read-from/written-into the buffers. * * When writing, we flush data in the following priority order: * * 1. Finish writing any in-progress MSG_DATA sequence from iobuf.out. * * 2. Write out all the messages from the message buf (if iobuf.msg is active). * Yes, this means that a PIO_NEED_OUTROOM call will completely flush any * messages before getting to the iobuf.out flushing (except for rule 1). * * 3. Write out the raw data from iobuf.out, possibly filling in the multiplexed * MSG_DATA header that was pre-allocated (when output is multiplexed). * * TODO: items for possible future work: * * - Make this routine able to read the generator-to-receiver batch flow? * * Unlike the old routines that this replaces, it is OK to read ahead as far as * we can because the read_a_msg() routine now reads its bytes out of the input * buffer. In the old days, only raw data was in the input buffer, and any * unused raw data in the buf would prevent the reading of socket data. */ static char *perform_io(size_t needed, int flags) { fd_set r_fds, e_fds, w_fds; struct timeval tv; int cnt, max_fd; size_t empty_buf_len = 0; xbuf *out; char *data; if (iobuf.in.len == 0 && iobuf.in.pos != 0) { if (iobuf.raw_input_ends_before) iobuf.raw_input_ends_before -= iobuf.in.pos; iobuf.in.pos = 0; } switch (flags & PIO_NEED_FLAGS) { case PIO_NEED_INPUT: /* We never resize the circular input buffer. */ if (iobuf.in.size < needed) { rprintf(FERROR, "need to read %ld bytes, iobuf.in.buf is only %ld bytes.\n", (long)needed, (long)iobuf.in.size); exit_cleanup(RERR_PROTOCOL); } if (DEBUG_GTE(IO, 3)) { rprintf(FINFO, "[%s] perform_io(%ld, %sinput)\n", who_am_i(), (long)needed, flags & PIO_CONSUME_INPUT ? "consume&" : ""); } break; case PIO_NEED_OUTROOM: /* We never resize the circular output buffer. */ if (iobuf.out.size - iobuf.out_empty_len < needed) { fprintf(stderr, "need to write %ld bytes, iobuf.out.buf is only %ld bytes.\n", (long)needed, (long)(iobuf.out.size - iobuf.out_empty_len)); exit_cleanup(RERR_PROTOCOL); } if (DEBUG_GTE(IO, 3)) { rprintf(FINFO, "[%s] perform_io(%ld, outroom) needs to flush %ld\n", who_am_i(), (long)needed, iobuf.out.len + needed > iobuf.out.size ? (long)(iobuf.out.len + needed - iobuf.out.size) : 0L); } break; case PIO_NEED_MSGROOM: /* We never resize the circular message buffer. */ if (iobuf.msg.size < needed) { fprintf(stderr, "need to write %ld bytes, iobuf.msg.buf is only %ld bytes.\n", (long)needed, (long)iobuf.msg.size); exit_cleanup(RERR_PROTOCOL); } if (DEBUG_GTE(IO, 3)) { rprintf(FINFO, "[%s] perform_io(%ld, msgroom) needs to flush %ld\n", who_am_i(), (long)needed, iobuf.msg.len + needed > iobuf.msg.size ? (long)(iobuf.msg.len + needed - iobuf.msg.size) : 0L); } break; case 0: if (DEBUG_GTE(IO, 3)) rprintf(FINFO, "[%s] perform_io(%ld, %d)\n", who_am_i(), (long)needed, flags); break; default: exit_cleanup(RERR_UNSUPPORTED); } while (1) { switch (flags & PIO_NEED_FLAGS) { case PIO_NEED_INPUT: if (iobuf.in.len >= needed) goto double_break; break; case PIO_NEED_OUTROOM: /* Note that iobuf.out_empty_len doesn't factor into this check * because iobuf.out.len already holds any needed header len. */ if (iobuf.out.len + needed <= iobuf.out.size) goto double_break; break; case PIO_NEED_MSGROOM: if (iobuf.msg.len + needed <= iobuf.msg.size) goto double_break; break; } max_fd = -1; FD_ZERO(&r_fds); FD_ZERO(&e_fds); if (iobuf.in_fd >= 0 && iobuf.in.size - iobuf.in.len) { if (!read_batch || batch_fd >= 0) { FD_SET(iobuf.in_fd, &r_fds); FD_SET(iobuf.in_fd, &e_fds); } if (iobuf.in_fd > max_fd) max_fd = iobuf.in_fd; } /* Only do more filesfrom processing if there is enough room in the out buffer. */ if (ff_forward_fd >= 0 && iobuf.out.size - iobuf.out.len > FILESFROM_BUFLEN*2) { FD_SET(ff_forward_fd, &r_fds); if (ff_forward_fd > max_fd) max_fd = ff_forward_fd; } FD_ZERO(&w_fds); if (iobuf.out_fd >= 0) { if (iobuf.raw_flushing_ends_before || (!iobuf.msg.len && iobuf.out.len > iobuf.out_empty_len && !(flags & PIO_NEED_MSGROOM))) { if (OUT_MULTIPLEXED && !iobuf.raw_flushing_ends_before) { /* The iobuf.raw_flushing_ends_before value can point off the end * of the iobuf.out buffer for a while, for easier subtracting. */ iobuf.raw_flushing_ends_before = iobuf.out.pos + iobuf.out.len; SIVAL(iobuf.out.buf + iobuf.raw_data_header_pos, 0, ((MPLEX_BASE + (int)MSG_DATA)<<24) + iobuf.out.len - 4); if (DEBUG_GTE(IO, 1)) { rprintf(FINFO, "[%s] send_msg(%d, %ld)\n", who_am_i(), (int)MSG_DATA, (long)iobuf.out.len - 4); } /* reserve room for the next MSG_DATA header */ iobuf.raw_data_header_pos = iobuf.raw_flushing_ends_before; if (iobuf.raw_data_header_pos >= iobuf.out.size) iobuf.raw_data_header_pos -= iobuf.out.size; else if (iobuf.raw_data_header_pos + 4 > iobuf.out.size) { /* The 4-byte header won't fit at the end of the buffer, * so we'll temporarily reduce the output buffer's size * and put the header at the start of the buffer. */ reduce_iobuf_size(&iobuf.out, iobuf.raw_data_header_pos); iobuf.raw_data_header_pos = 0; } /* Yes, it is possible for this to make len > size for a while. */ iobuf.out.len += 4; } empty_buf_len = iobuf.out_empty_len; out = &iobuf.out; } else if (iobuf.msg.len) { empty_buf_len = 0; out = &iobuf.msg; } else out = NULL; if (out) { FD_SET(iobuf.out_fd, &w_fds); if (iobuf.out_fd > max_fd) max_fd = iobuf.out_fd; } } else out = NULL; if (max_fd < 0) { switch (flags & PIO_NEED_FLAGS) { case PIO_NEED_INPUT: iobuf.in.len = 0; if (kluge_around_eof == 2) exit_cleanup(0); if (iobuf.in_fd == -2) whine_about_eof(True); rprintf(FERROR, "error in perform_io: no fd for input.\n"); exit_cleanup(RERR_PROTOCOL); case PIO_NEED_OUTROOM: case PIO_NEED_MSGROOM: msgs2stderr = 1; drain_multiplex_messages(); if (iobuf.out_fd == -2) whine_about_eof(True); rprintf(FERROR, "error in perform_io: no fd for output.\n"); exit_cleanup(RERR_PROTOCOL); default: /* No stated needs, so I guess this is OK. */ break; } break; } if (extra_flist_sending_enabled) { if (file_total - file_old_total < MAX_FILECNT_LOOKAHEAD) tv.tv_sec = 0; else { extra_flist_sending_enabled = False; tv.tv_sec = select_timeout; } } else tv.tv_sec = select_timeout; tv.tv_usec = 0; cnt = select(max_fd + 1, &r_fds, &w_fds, &e_fds, &tv); if (cnt <= 0) { if (cnt < 0 && errno == EBADF) { msgs2stderr = 1; exit_cleanup(RERR_SOCKETIO); } if (extra_flist_sending_enabled) { extra_flist_sending_enabled = False; send_extra_file_list(sock_f_out, -1); extra_flist_sending_enabled = !flist_eof; } else check_timeout((flags & PIO_NEED_INPUT) != 0); FD_ZERO(&r_fds); /* Just in case... */ FD_ZERO(&w_fds); } if (iobuf.in_fd >= 0 && FD_ISSET(iobuf.in_fd, &r_fds)) { size_t len, pos = iobuf.in.pos + iobuf.in.len; int n; if (pos >= iobuf.in.size) { pos -= iobuf.in.size; len = iobuf.in.size - iobuf.in.len; } else len = iobuf.in.size - pos; if ((n = read(iobuf.in_fd, iobuf.in.buf + pos, len)) <= 0) { if (n == 0) { /* Signal that input has become invalid. */ if (!read_batch || batch_fd < 0 || am_generator) iobuf.in_fd = -2; batch_fd = -1; continue; } if (errno == EINTR || errno == EWOULDBLOCK || errno == EAGAIN) n = 0; else { /* Don't write errors on a dead socket. */ if (iobuf.in_fd == sock_f_in) { if (am_sender) msgs2stderr = 1; rsyserr(FERROR_SOCKET, errno, "read error"); } else rsyserr(FERROR, errno, "read error"); exit_cleanup(RERR_SOCKETIO); } } if (msgs2stderr && DEBUG_GTE(IO, 2)) rprintf(FINFO, "[%s] recv=%ld\n", who_am_i(), (long)n); if (io_timeout) { last_io_in = time(NULL); if (flags & PIO_NEED_INPUT) maybe_send_keepalive(last_io_in, 0); } stats.total_read += n; iobuf.in.len += n; } if (out && FD_ISSET(iobuf.out_fd, &w_fds)) { size_t len = iobuf.raw_flushing_ends_before ? iobuf.raw_flushing_ends_before - out->pos : out->len; int n; if (bwlimit_writemax && len > bwlimit_writemax) len = bwlimit_writemax; if (out->pos + len > out->size) len = out->size - out->pos; if ((n = write(iobuf.out_fd, out->buf + out->pos, len)) <= 0) { if (errno == EINTR || errno == EWOULDBLOCK || errno == EAGAIN) n = 0; else { /* Don't write errors on a dead socket. */ msgs2stderr = 1; iobuf.out_fd = -2; iobuf.out.len = iobuf.msg.len = iobuf.raw_flushing_ends_before = 0; rsyserr(FERROR_SOCKET, errno, "[%s] write error", who_am_i()); drain_multiplex_messages(); exit_cleanup(RERR_SOCKETIO); } } if (msgs2stderr && DEBUG_GTE(IO, 2)) { rprintf(FINFO, "[%s] %s sent=%ld\n", who_am_i(), out == &iobuf.out ? "out" : "msg", (long)n); } if (io_timeout) last_io_out = time(NULL); stats.total_written += n; if (bwlimit_writemax) sleep_for_bwlimit(n); if ((out->pos += n) == out->size) { if (iobuf.raw_flushing_ends_before) iobuf.raw_flushing_ends_before -= out->size; out->pos = 0; restore_iobuf_size(out); } else if (out->pos == iobuf.raw_flushing_ends_before) iobuf.raw_flushing_ends_before = 0; if ((out->len -= n) == empty_buf_len) { out->pos = 0; restore_iobuf_size(out); if (empty_buf_len) iobuf.raw_data_header_pos = 0; } } /* We need to help prevent deadlock by doing what reading * we can whenever we are here trying to write. */ if (IN_MULTIPLEXED_AND_READY && !(flags & PIO_NEED_INPUT)) { while (!iobuf.raw_input_ends_before && iobuf.in.len > 512) read_a_msg(); if (flist_receiving_enabled && iobuf.in.len > 512) wait_for_receiver(); /* generator only */ } if (ff_forward_fd >= 0 && FD_ISSET(ff_forward_fd, &r_fds)) { /* This can potentially flush all output and enable * multiplexed output, so keep this last in the loop * and be sure to not cache anything that would break * such a change. */ forward_filesfrom_data(); } } double_break: data = iobuf.in.buf + iobuf.in.pos; if (flags & PIO_CONSUME_INPUT) { iobuf.in.len -= needed; iobuf.in.pos += needed; if (iobuf.in.pos == iobuf.raw_input_ends_before) iobuf.raw_input_ends_before = 0; if (iobuf.in.pos >= iobuf.in.size) { iobuf.in.pos -= iobuf.in.size; if (iobuf.raw_input_ends_before) iobuf.raw_input_ends_before -= iobuf.in.size; } } return data; } static void raw_read_buf(char *buf, size_t len) { size_t pos = iobuf.in.pos; char *data = perform_io(len, PIO_INPUT_AND_CONSUME); if (iobuf.in.pos <= pos && len) { size_t siz = len - iobuf.in.pos; memcpy(buf, data, siz); memcpy(buf + siz, iobuf.in.buf, iobuf.in.pos); } else memcpy(buf, data, len); } static int32 raw_read_int(void) { char *data, buf[4]; if (iobuf.in.size - iobuf.in.pos >= 4) data = perform_io(4, PIO_INPUT_AND_CONSUME); else raw_read_buf(data = buf, 4); return IVAL(data, 0); } void noop_io_until_death(void) { char buf[1024]; kluge_around_eof = 2; /* Setting an I/O timeout ensures that if something inexplicably weird * happens, we won't hang around forever. */ if (!io_timeout) set_io_timeout(60); while (1) read_buf(iobuf.in_fd, buf, sizeof buf); } /* Buffer a message for the multiplexed output stream. Is not used for (normal) MSG_DATA. */ int send_msg(enum msgcode code, const char *buf, size_t len, int convert) { char *hdr; size_t needed, pos; BOOL want_debug = DEBUG_GTE(IO, 1) && convert >= 0 && (msgs2stderr || code != MSG_INFO); if (!OUT_MULTIPLEXED) return 0; if (want_debug) rprintf(FINFO, "[%s] send_msg(%d, %ld)\n", who_am_i(), (int)code, (long)len); /* When checking for enough free space for this message, we need to * make sure that there is space for the 4-byte header, plus we'll * assume that we may waste up to 3 bytes (if the header doesn't fit * at the physical end of the buffer). */ #ifdef ICONV_OPTION if (convert > 0 && ic_send == (iconv_t)-1) convert = 0; if (convert > 0) { /* Ensuring double-size room leaves space for maximal conversion expansion. */ needed = len*2 + 4 + 3; } else #endif needed = len + 4 + 3; if (iobuf.msg.len + needed > iobuf.msg.size) perform_io(needed, PIO_NEED_MSGROOM); pos = iobuf.msg.pos + iobuf.msg.len; /* Must be set after any flushing. */ if (pos >= iobuf.msg.size) pos -= iobuf.msg.size; else if (pos + 4 > iobuf.msg.size) { /* The 4-byte header won't fit at the end of the buffer, * so we'll temporarily reduce the message buffer's size * and put the header at the start of the buffer. */ reduce_iobuf_size(&iobuf.msg, pos); pos = 0; } hdr = iobuf.msg.buf + pos; iobuf.msg.len += 4; /* Allocate room for the coming header bytes. */ #ifdef ICONV_OPTION if (convert > 0) { xbuf inbuf; INIT_XBUF(inbuf, (char*)buf, len, (size_t)-1); len = iobuf.msg.len; iconvbufs(ic_send, &inbuf, &iobuf.msg, ICB_INCLUDE_BAD | ICB_INCLUDE_INCOMPLETE | ICB_CIRCULAR_OUT | ICB_INIT); if (inbuf.len > 0) { rprintf(FERROR, "overflowed iobuf.msg buffer in send_msg"); exit_cleanup(RERR_UNSUPPORTED); } len = iobuf.msg.len - len; } else #endif { size_t siz; if ((pos += 4) == iobuf.msg.size) pos = 0; /* Handle a split copy if we wrap around the end of the circular buffer. */ if (pos >= iobuf.msg.pos && (siz = iobuf.msg.size - pos) < len) { memcpy(iobuf.msg.buf + pos, buf, siz); memcpy(iobuf.msg.buf, buf + siz, len - siz); } else memcpy(iobuf.msg.buf + pos, buf, len); iobuf.msg.len += len; } SIVAL(hdr, 0, ((MPLEX_BASE + (int)code)<<24) + len); if (want_debug && convert > 0) rprintf(FINFO, "[%s] converted msg len=%ld\n", who_am_i(), (long)len); return 1; } void send_msg_int(enum msgcode code, int num) { char numbuf[4]; if (DEBUG_GTE(IO, 1)) rprintf(FINFO, "[%s] send_msg_int(%d, %d)\n", who_am_i(), (int)code, num); SIVAL(numbuf, 0, num); send_msg(code, numbuf, 4, -1); } static void got_flist_entry_status(enum festatus status, int ndx) { struct file_list *flist = flist_for_ndx(ndx, "got_flist_entry_status"); if (remove_source_files) { active_filecnt--; active_bytecnt -= F_LENGTH(flist->files[ndx - flist->ndx_start]); } if (inc_recurse) flist->in_progress--; switch (status) { case FES_SUCCESS: if (remove_source_files) send_msg_int(MSG_SUCCESS, ndx); if (preserve_hard_links) { struct file_struct *file = flist->files[ndx - flist->ndx_start]; if (F_IS_HLINKED(file)) { flist_ndx_push(&hlink_list, ndx); flist->in_progress++; } } break; case FES_REDO: if (read_batch) { if (inc_recurse) flist->in_progress++; break; } if (inc_recurse) flist->to_redo++; flist_ndx_push(&redo_list, ndx); break; case FES_NO_SEND: break; } } /* Note the fds used for the main socket (which might really be a pipe * for a local transfer, but we can ignore that). */ void io_set_sock_fds(int f_in, int f_out) { sock_f_in = f_in; sock_f_out = f_out; } void set_io_timeout(int secs) { io_timeout = secs; allowed_lull = (io_timeout + 1) / 2; if (!io_timeout || allowed_lull > SELECT_TIMEOUT) select_timeout = SELECT_TIMEOUT; else select_timeout = allowed_lull; if (read_batch) allowed_lull = 0; } static void check_for_d_option_error(const char *msg) { static char rsync263_opts[] = "BCDHIKLPRSTWabceghlnopqrtuvxz"; char *colon; int saw_d = 0; if (*msg != 'r' || strncmp(msg, REMOTE_OPTION_ERROR, sizeof REMOTE_OPTION_ERROR - 1) != 0) return; msg += sizeof REMOTE_OPTION_ERROR - 1; if (*msg == '-' || (colon = strchr(msg, ':')) == NULL || strncmp(colon, REMOTE_OPTION_ERROR2, sizeof REMOTE_OPTION_ERROR2 - 1) != 0) return; for ( ; *msg != ':'; msg++) { if (*msg == 'd') saw_d = 1; else if (*msg == 'e') break; else if (strchr(rsync263_opts, *msg) == NULL) return; } if (saw_d) { rprintf(FWARNING, "*** Try using \"--old-d\" if remote rsync is <= 2.6.3 ***\n"); } } /* This is used by the generator to limit how many file transfers can * be active at once when --remove-source-files is specified. Without * this, sender-side deletions were mostly happening at the end. */ void increment_active_files(int ndx, int itemizing, enum logcode code) { while (1) { /* TODO: tune these limits? */ int limit = active_bytecnt >= 128*1024 ? 10 : 50; if (active_filecnt < limit) break; check_for_finished_files(itemizing, code, 0); if (active_filecnt < limit) break; wait_for_receiver(); } active_filecnt++; active_bytecnt += F_LENGTH(cur_flist->files[ndx - cur_flist->ndx_start]); } int get_redo_num(void) { return flist_ndx_pop(&redo_list); } int get_hlink_num(void) { return flist_ndx_pop(&hlink_list); } /* When we're the receiver and we have a local --files-from list of names * that needs to be sent over the socket to the sender, we have to do two * things at the same time: send the sender a list of what files we're * processing and read the incoming file+info list from the sender. We do * this by making recv_file_list() call forward_filesfrom_data(), which * will ensure that we forward data to the sender until we get some data * for recv_file_list() to use. */ void start_filesfrom_forwarding(int fd) { if (protocol_version < 31 && OUT_MULTIPLEXED) { /* Older protocols send the files-from data w/o packaging * it in multiplexed I/O packets, so temporarily switch * to buffered I/O to match this behavior. */ iobuf.msg.pos = iobuf.msg.len = 0; /* Be extra sure no messages go out. */ ff_reenable_multiplex = io_end_multiplex_out(MPLX_TO_BUFFERED); } ff_forward_fd = fd; alloc_xbuf(&ff_xb, FILESFROM_BUFLEN); } /* Read a line into the "buf" buffer. */ int read_line(int fd, char *buf, size_t bufsiz, int flags) { char ch, *s, *eob; #ifdef ICONV_OPTION if (flags & RL_CONVERT && iconv_buf.size < bufsiz) realloc_xbuf(&iconv_buf, bufsiz + 1024); #endif start: #ifdef ICONV_OPTION s = flags & RL_CONVERT ? iconv_buf.buf : buf; #else s = buf; #endif eob = s + bufsiz - 1; while (1) { /* We avoid read_byte() for files because files can return an EOF. */ if (fd == iobuf.in_fd) ch = read_byte(fd); else if (safe_read(fd, &ch, 1) == 0) break; if (flags & RL_EOL_NULLS ? ch == '\0' : (ch == '\r' || ch == '\n')) { /* Skip empty lines if dumping comments. */ if (flags & RL_DUMP_COMMENTS && s == buf) continue; break; } if (s < eob) *s++ = ch; } *s = '\0'; if (flags & RL_DUMP_COMMENTS && (*buf == '#' || *buf == ';')) goto start; #ifdef ICONV_OPTION if (flags & RL_CONVERT) { xbuf outbuf; INIT_XBUF(outbuf, buf, 0, bufsiz); iconv_buf.pos = 0; iconv_buf.len = s - iconv_buf.buf; iconvbufs(ic_recv, &iconv_buf, &outbuf, ICB_INCLUDE_BAD | ICB_INCLUDE_INCOMPLETE | ICB_INIT); outbuf.buf[outbuf.len] = '\0'; return outbuf.len; } #endif return s - buf; } void read_args(int f_in, char *mod_name, char *buf, size_t bufsiz, int rl_nulls, char ***argv_p, int *argc_p, char **request_p) { int maxargs = MAX_ARGS; int dot_pos = 0; int argc = 0; char **argv, *p; int rl_flags = (rl_nulls ? RL_EOL_NULLS : 0); #ifdef ICONV_OPTION rl_flags |= (protect_args && ic_recv != (iconv_t)-1 ? RL_CONVERT : 0); #endif if (!(argv = new_array(char *, maxargs))) out_of_memory("read_args"); if (mod_name && !protect_args) argv[argc++] = "rsyncd"; while (1) { if (read_line(f_in, buf, bufsiz, rl_flags) == 0) break; if (argc == maxargs-1) { maxargs += MAX_ARGS; if (!(argv = realloc_array(argv, char *, maxargs))) out_of_memory("read_args"); } if (dot_pos) { if (request_p) { *request_p = strdup(buf); request_p = NULL; } if (mod_name) glob_expand_module(mod_name, buf, &argv, &argc, &maxargs); else glob_expand(buf, &argv, &argc, &maxargs); } else { if (!(p = strdup(buf))) out_of_memory("read_args"); argv[argc++] = p; if (*p == '.' && p[1] == '\0') dot_pos = argc; } } argv[argc] = NULL; glob_expand(NULL, NULL, NULL, NULL); *argc_p = argc; *argv_p = argv; } BOOL io_start_buffering_out(int f_out) { if (msgs2stderr && DEBUG_GTE(IO, 2)) rprintf(FINFO, "[%s] io_start_buffering_out(%d)\n", who_am_i(), f_out); if (iobuf.out.buf) { if (iobuf.out_fd == -1) iobuf.out_fd = f_out; else assert(f_out == iobuf.out_fd); return False; } alloc_xbuf(&iobuf.out, ROUND_UP_1024(IO_BUFFER_SIZE * 2)); iobuf.out_fd = f_out; return True; } BOOL io_start_buffering_in(int f_in) { if (msgs2stderr && DEBUG_GTE(IO, 2)) rprintf(FINFO, "[%s] io_start_buffering_in(%d)\n", who_am_i(), f_in); if (iobuf.in.buf) { if (iobuf.in_fd == -1) iobuf.in_fd = f_in; else assert(f_in == iobuf.in_fd); return False; } alloc_xbuf(&iobuf.in, ROUND_UP_1024(IO_BUFFER_SIZE)); iobuf.in_fd = f_in; return True; } void io_end_buffering_in(BOOL free_buffers) { if (msgs2stderr && DEBUG_GTE(IO, 2)) { rprintf(FINFO, "[%s] io_end_buffering_in(IOBUF_%s_BUFS)\n", who_am_i(), free_buffers ? "FREE" : "KEEP"); } if (free_buffers) free_xbuf(&iobuf.in); else iobuf.in.pos = iobuf.in.len = 0; iobuf.in_fd = -1; } void io_end_buffering_out(BOOL free_buffers) { if (msgs2stderr && DEBUG_GTE(IO, 2)) { rprintf(FINFO, "[%s] io_end_buffering_out(IOBUF_%s_BUFS)\n", who_am_i(), free_buffers ? "FREE" : "KEEP"); } io_flush(FULL_FLUSH); if (free_buffers) { free_xbuf(&iobuf.out); free_xbuf(&iobuf.msg); } iobuf.out_fd = -1; } void maybe_flush_socket(int important) { if (flist_eof && iobuf.out.buf && iobuf.out.len > iobuf.out_empty_len && (important || time(NULL) - last_io_out >= 5)) io_flush(NORMAL_FLUSH); } /* Older rsync versions used to send either a MSG_NOOP (protocol 30) or a * raw-data-based keep-alive (protocol 29), both of which implied forwarding of * the message through the sender. Since the new timeout method does not need * any forwarding, we just send an empty MSG_DATA message, which works with all * rsync versions. This avoids any message forwarding, and leaves the raw-data * stream alone (since we can never be quite sure if that stream is in the * right state for a keep-alive message). */ void maybe_send_keepalive(time_t now, int flags) { if (flags & MSK_ACTIVE_RECEIVER) last_io_in = now; /* Fudge things when we're working hard on the files. */ if (now - last_io_out >= allowed_lull) { /* The receiver is special: it only sends keep-alive messages if it is * actively receiving data. Otherwise, it lets the generator timeout. */ if (am_receiver && now - last_io_in >= io_timeout) return; if (!iobuf.msg.len && iobuf.out.len == iobuf.out_empty_len) send_msg(MSG_DATA, "", 0, 0); if (!(flags & MSK_ALLOW_FLUSH)) { /* Let the caller worry about writing out the data. */ } else if (iobuf.msg.len) perform_io(iobuf.msg.size - iobuf.msg.len + 1, PIO_NEED_MSGROOM); else if (iobuf.out.len > iobuf.out_empty_len) io_flush(NORMAL_FLUSH); } } void start_flist_forward(int ndx) { write_int(iobuf.out_fd, ndx); forward_flist_data = 1; } void stop_flist_forward(void) { forward_flist_data = 0; } /* Read a message from a multiplexed source. */ static void read_a_msg(void) { char data[BIGPATHBUFLEN]; int tag, val; size_t msg_bytes; /* This ensures that perform_io() does not try to do any message reading * until we've read all of the data for this message. We should also * try to avoid calling things that will cause data to be written via * perform_io() prior to this being reset to 1. */ iobuf.in_multiplexed = -1; tag = raw_read_int(); msg_bytes = tag & 0xFFFFFF; tag = (tag >> 24) - MPLEX_BASE; if (DEBUG_GTE(IO, 1) && msgs2stderr) rprintf(FINFO, "[%s] got msg=%d, len=%ld\n", who_am_i(), (int)tag, (long)msg_bytes); switch (tag) { case MSG_DATA: assert(iobuf.raw_input_ends_before == 0); /* Though this does not yet read the data, we do mark where in * the buffer the msg data will end once it is read. It is * possible that this points off the end of the buffer, in * which case the gradual reading of the input stream will * cause this value to wrap around and eventually become real. */ if (msg_bytes) iobuf.raw_input_ends_before = iobuf.in.pos + msg_bytes; iobuf.in_multiplexed = 1; break; case MSG_STATS: if (msg_bytes != sizeof stats.total_read || !am_generator) goto invalid_msg; raw_read_buf((char*)&stats.total_read, sizeof stats.total_read); iobuf.in_multiplexed = 1; break; case MSG_REDO: if (msg_bytes != 4 || !am_generator) goto invalid_msg; val = raw_read_int(); iobuf.in_multiplexed = 1; got_flist_entry_status(FES_REDO, val); break; case MSG_IO_ERROR: if (msg_bytes != 4) goto invalid_msg; val = raw_read_int(); iobuf.in_multiplexed = 1; io_error |= val; if (am_receiver) send_msg_int(MSG_IO_ERROR, val); break; case MSG_IO_TIMEOUT: if (msg_bytes != 4 || am_server || am_generator) goto invalid_msg; val = raw_read_int(); iobuf.in_multiplexed = 1; if (!io_timeout || io_timeout > val) { if (INFO_GTE(MISC, 2)) rprintf(FINFO, "Setting --timeout=%d to match server\n", val); set_io_timeout(val); } break; case MSG_NOOP: /* Support protocol-30 keep-alive method. */ if (msg_bytes != 0) goto invalid_msg; iobuf.in_multiplexed = 1; if (am_sender) maybe_send_keepalive(time(NULL), MSK_ALLOW_FLUSH); break; case MSG_DELETED: if (msg_bytes >= sizeof data) goto overflow; if (am_generator) { raw_read_buf(data, msg_bytes); iobuf.in_multiplexed = 1; send_msg(MSG_DELETED, data, msg_bytes, 1); break; } #ifdef ICONV_OPTION if (ic_recv != (iconv_t)-1) { xbuf outbuf, inbuf; char ibuf[512]; int add_null = 0; int flags = ICB_INCLUDE_BAD | ICB_INIT; INIT_CONST_XBUF(outbuf, data); INIT_XBUF(inbuf, ibuf, 0, (size_t)-1); while (msg_bytes) { size_t len = msg_bytes > sizeof ibuf - inbuf.len ? sizeof ibuf - inbuf.len : msg_bytes; raw_read_buf(ibuf + inbuf.len, len); inbuf.pos = 0; inbuf.len += len; if (!(msg_bytes -= len) && !ibuf[inbuf.len-1]) inbuf.len--, add_null = 1; if (iconvbufs(ic_send, &inbuf, &outbuf, flags) < 0) { if (errno == E2BIG) goto overflow; /* Buffer ended with an incomplete char, so move the * bytes to the start of the buffer and continue. */ memmove(ibuf, ibuf + inbuf.pos, inbuf.len); } flags &= ~ICB_INIT; } if (add_null) { if (outbuf.len == outbuf.size) goto overflow; outbuf.buf[outbuf.len++] = '\0'; } msg_bytes = outbuf.len; } else #endif raw_read_buf(data, msg_bytes); iobuf.in_multiplexed = 1; /* A directory name was sent with the trailing null */ if (msg_bytes > 0 && !data[msg_bytes-1]) log_delete(data, S_IFDIR); else { data[msg_bytes] = '\0'; log_delete(data, S_IFREG); } break; case MSG_SUCCESS: if (msg_bytes != 4) { invalid_msg: rprintf(FERROR, "invalid multi-message %d:%lu [%s%s]\n", tag, (unsigned long)msg_bytes, who_am_i(), inc_recurse ? "/inc" : ""); exit_cleanup(RERR_STREAMIO); } val = raw_read_int(); iobuf.in_multiplexed = 1; if (am_generator) got_flist_entry_status(FES_SUCCESS, val); else successful_send(val); break; case MSG_NO_SEND: if (msg_bytes != 4) goto invalid_msg; val = raw_read_int(); iobuf.in_multiplexed = 1; if (am_generator) got_flist_entry_status(FES_NO_SEND, val); else send_msg_int(MSG_NO_SEND, val); break; case MSG_ERROR_SOCKET: case MSG_ERROR_UTF8: case MSG_CLIENT: case MSG_LOG: if (!am_generator) goto invalid_msg; if (tag == MSG_ERROR_SOCKET) msgs2stderr = 1; /* FALL THROUGH */ case MSG_INFO: case MSG_ERROR: case MSG_ERROR_XFER: case MSG_WARNING: if (msg_bytes >= sizeof data) { overflow: rprintf(FERROR, "multiplexing overflow %d:%lu [%s%s]\n", tag, (unsigned long)msg_bytes, who_am_i(), inc_recurse ? "/inc" : ""); exit_cleanup(RERR_STREAMIO); } raw_read_buf(data, msg_bytes); iobuf.in_multiplexed = 1; rwrite((enum logcode)tag, data, msg_bytes, !am_generator); if (first_message) { if (list_only && !am_sender && tag == 1 && msg_bytes < sizeof data) { data[msg_bytes] = '\0'; check_for_d_option_error(data); } first_message = 0; } break; case MSG_ERROR_EXIT: if (msg_bytes == 4) val = raw_read_int(); else if (msg_bytes == 0) val = 0; else goto invalid_msg; iobuf.in_multiplexed = 1; if (DEBUG_GTE(EXIT, 3)) rprintf(FINFO, "[%s] got MSG_ERROR_EXIT with %ld bytes\n", who_am_i(), (long)msg_bytes); if (msg_bytes == 0) { if (!am_sender && !am_generator) { if (DEBUG_GTE(EXIT, 3)) { rprintf(FINFO, "[%s] sending MSG_ERROR_EXIT (len 0)\n", who_am_i()); } send_msg(MSG_ERROR_EXIT, "", 0, 0); io_flush(FULL_FLUSH); } } else if (protocol_version >= 31) { if (am_generator) { if (DEBUG_GTE(EXIT, 3)) { rprintf(FINFO, "[%s] sending MSG_ERROR_EXIT with exit_code %d\n", who_am_i(), val); } send_msg_int(MSG_ERROR_EXIT, val); } else { if (DEBUG_GTE(EXIT, 3)) { rprintf(FINFO, "[%s] sending MSG_ERROR_EXIT (len 0)\n", who_am_i()); } send_msg(MSG_ERROR_EXIT, "", 0, 0); } } /* Send a negative linenum so that we don't end up * with a duplicate exit message. */ _exit_cleanup(val, __FILE__, 0 - __LINE__); default: rprintf(FERROR, "unexpected tag %d [%s%s]\n", tag, who_am_i(), inc_recurse ? "/inc" : ""); exit_cleanup(RERR_STREAMIO); } assert(iobuf.in_multiplexed > 0); } static void drain_multiplex_messages(void) { while (IN_MULTIPLEXED_AND_READY && iobuf.in.len) { if (iobuf.raw_input_ends_before) { size_t raw_len = iobuf.raw_input_ends_before - iobuf.in.pos; iobuf.raw_input_ends_before = 0; if (raw_len >= iobuf.in.len) { iobuf.in.len = 0; break; } iobuf.in.len -= raw_len; if ((iobuf.in.pos += raw_len) >= iobuf.in.size) iobuf.in.pos -= iobuf.in.size; } read_a_msg(); } } void wait_for_receiver(void) { if (!iobuf.raw_input_ends_before) read_a_msg(); if (iobuf.raw_input_ends_before) { int ndx = read_int(iobuf.in_fd); if (ndx < 0) { switch (ndx) { case NDX_FLIST_EOF: flist_eof = 1; if (DEBUG_GTE(FLIST, 3)) rprintf(FINFO, "[%s] flist_eof=1\n", who_am_i()); break; case NDX_DONE: msgdone_cnt++; break; default: exit_cleanup(RERR_STREAMIO); } } else { struct file_list *flist; flist_receiving_enabled = False; if (DEBUG_GTE(FLIST, 2)) { rprintf(FINFO, "[%s] receiving flist for dir %d\n", who_am_i(), ndx); } flist = recv_file_list(iobuf.in_fd); flist->parent_ndx = ndx; #ifdef SUPPORT_HARD_LINKS if (preserve_hard_links) match_hard_links(flist); #endif flist_receiving_enabled = True; } } } unsigned short read_shortint(int f) { char b[2]; read_buf(f, b, 2); return (UVAL(b, 1) << 8) + UVAL(b, 0); } int32 read_int(int f) { char b[4]; int32 num; read_buf(f, b, 4); num = IVAL(b, 0); #if SIZEOF_INT32 > 4 if (num & (int32)0x80000000) num |= ~(int32)0xffffffff; #endif return num; } int32 read_varint(int f) { union { char b[5]; int32 x; } u; uchar ch; int extra; u.x = 0; ch = read_byte(f); extra = int_byte_extra[ch / 4]; if (extra) { uchar bit = ((uchar)1<<(8-extra)); if (extra >= (int)sizeof u.b) { rprintf(FERROR, "Overflow in read_varint()\n"); exit_cleanup(RERR_STREAMIO); } read_buf(f, u.b, extra); u.b[extra] = ch & (bit-1); } else u.b[0] = ch; #if CAREFUL_ALIGNMENT u.x = IVAL(u.b,0); #endif #if SIZEOF_INT32 > 4 if (u.x & (int32)0x80000000) u.x |= ~(int32)0xffffffff; #endif return u.x; } int64 read_varlong(int f, uchar min_bytes) { union { char b[9]; int64 x; } u; char b2[8]; int extra; #if SIZEOF_INT64 < 8 memset(u.b, 0, 8); #else u.x = 0; #endif read_buf(f, b2, min_bytes); memcpy(u.b, b2+1, min_bytes-1); extra = int_byte_extra[CVAL(b2, 0) / 4]; if (extra) { uchar bit = ((uchar)1<<(8-extra)); if (min_bytes + extra > (int)sizeof u.b) { rprintf(FERROR, "Overflow in read_varlong()\n"); exit_cleanup(RERR_STREAMIO); } read_buf(f, u.b + min_bytes - 1, extra); u.b[min_bytes + extra - 1] = CVAL(b2, 0) & (bit-1); #if SIZEOF_INT64 < 8 if (min_bytes + extra > 5 || u.b[4] || CVAL(u.b,3) & 0x80) { rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n"); exit_cleanup(RERR_UNSUPPORTED); } #endif } else u.b[min_bytes + extra - 1] = CVAL(b2, 0); #if SIZEOF_INT64 < 8 u.x = IVAL(u.b,0); #elif CAREFUL_ALIGNMENT u.x = IVAL(u.b,0) | (((int64)IVAL(u.b,4))<<32); #endif return u.x; } int64 read_longint(int f) { #if SIZEOF_INT64 >= 8 char b[9]; #endif int32 num = read_int(f); if (num != (int32)0xffffffff) return num; #if SIZEOF_INT64 < 8 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n"); exit_cleanup(RERR_UNSUPPORTED); #else read_buf(f, b, 8); return IVAL(b,0) | (((int64)IVAL(b,4))<<32); #endif } void read_buf(int f, char *buf, size_t len) { if (f != iobuf.in_fd) { if (safe_read(f, buf, len) != len) whine_about_eof(False); /* Doesn't return. */ goto batch_copy; } if (!IN_MULTIPLEXED) { raw_read_buf(buf, len); total_data_read += len; if (forward_flist_data) write_buf(iobuf.out_fd, buf, len); batch_copy: if (f == write_batch_monitor_in) safe_write(batch_fd, buf, len); return; } while (1) { size_t siz; while (!iobuf.raw_input_ends_before) read_a_msg(); siz = MIN(len, iobuf.raw_input_ends_before - iobuf.in.pos); if (siz >= iobuf.in.size) siz = iobuf.in.size; raw_read_buf(buf, siz); total_data_read += siz; if (forward_flist_data) write_buf(iobuf.out_fd, buf, siz); if (f == write_batch_monitor_in) safe_write(batch_fd, buf, siz); if ((len -= siz) == 0) break; buf += siz; } } void read_sbuf(int f, char *buf, size_t len) { read_buf(f, buf, len); buf[len] = '\0'; } uchar read_byte(int f) { uchar c; read_buf(f, (char*)&c, 1); return c; } int read_vstring(int f, char *buf, int bufsize) { int len = read_byte(f); if (len & 0x80) len = (len & ~0x80) * 0x100 + read_byte(f); if (len >= bufsize) { rprintf(FERROR, "over-long vstring received (%d > %d)\n", len, bufsize - 1); return -1; } if (len) read_buf(f, buf, len); buf[len] = '\0'; return len; } /* Populate a sum_struct with values from the socket. This is * called by both the sender and the receiver. */ void read_sum_head(int f, struct sum_struct *sum) { int32 max_blength = protocol_version < 30 ? OLD_MAX_BLOCK_SIZE : MAX_BLOCK_SIZE; sum->count = read_int(f); if (sum->count < 0) { rprintf(FERROR, "Invalid checksum count %ld [%s]\n", (long)sum->count, who_am_i()); exit_cleanup(RERR_PROTOCOL); } sum->blength = read_int(f); if (sum->blength < 0 || sum->blength > max_blength) { rprintf(FERROR, "Invalid block length %ld [%s]\n", (long)sum->blength, who_am_i()); exit_cleanup(RERR_PROTOCOL); } sum->s2length = protocol_version < 27 ? csum_length : (int)read_int(f); if (sum->s2length < 0 || sum->s2length > MAX_DIGEST_LEN) { rprintf(FERROR, "Invalid checksum length %d [%s]\n", sum->s2length, who_am_i()); exit_cleanup(RERR_PROTOCOL); } sum->remainder = read_int(f); if (sum->remainder < 0 || sum->remainder > sum->blength) { rprintf(FERROR, "Invalid remainder length %ld [%s]\n", (long)sum->remainder, who_am_i()); exit_cleanup(RERR_PROTOCOL); } } /* Send the values from a sum_struct over the socket. Set sum to * NULL if there are no checksums to send. This is called by both * the generator and the sender. */ void write_sum_head(int f, struct sum_struct *sum) { static struct sum_struct null_sum; if (sum == NULL) sum = &null_sum; write_int(f, sum->count); write_int(f, sum->blength); if (protocol_version >= 27) write_int(f, sum->s2length); write_int(f, sum->remainder); } /* Sleep after writing to limit I/O bandwidth usage. * * @todo Rather than sleeping after each write, it might be better to * use some kind of averaging. The current algorithm seems to always * use a bit less bandwidth than specified, because it doesn't make up * for slow periods. But arguably this is a feature. In addition, we * ought to take the time used to write the data into account. * * During some phases of big transfers (file FOO is uptodate) this is * called with a small bytes_written every time. As the kernel has to * round small waits up to guarantee that we actually wait at least the * requested number of microseconds, this can become grossly inaccurate. * We therefore keep track of the bytes we've written over time and only * sleep when the accumulated delay is at least 1 tenth of a second. */ static void sleep_for_bwlimit(int bytes_written) { static struct timeval prior_tv; static long total_written = 0; struct timeval tv, start_tv; long elapsed_usec, sleep_usec; #define ONE_SEC 1000000L /* # of microseconds in a second */ total_written += bytes_written; gettimeofday(&start_tv, NULL); if (prior_tv.tv_sec) { elapsed_usec = (start_tv.tv_sec - prior_tv.tv_sec) * ONE_SEC + (start_tv.tv_usec - prior_tv.tv_usec); total_written -= elapsed_usec * bwlimit / (ONE_SEC/1024); if (total_written < 0) total_written = 0; } sleep_usec = total_written * (ONE_SEC/1024) / bwlimit; if (sleep_usec < ONE_SEC / 10) { prior_tv = start_tv; return; } tv.tv_sec = sleep_usec / ONE_SEC; tv.tv_usec = sleep_usec % ONE_SEC; select(0, NULL, NULL, NULL, &tv); gettimeofday(&prior_tv, NULL); elapsed_usec = (prior_tv.tv_sec - start_tv.tv_sec) * ONE_SEC + (prior_tv.tv_usec - start_tv.tv_usec); total_written = (sleep_usec - elapsed_usec) * bwlimit / (ONE_SEC/1024); } void io_flush(int flush_it_all) { if (iobuf.out.len > iobuf.out_empty_len) { if (flush_it_all) /* FULL_FLUSH: flush everything in the output buffers */ perform_io(iobuf.out.size - iobuf.out_empty_len, PIO_NEED_OUTROOM); else /* NORMAL_FLUSH: flush at least 1 byte */ perform_io(iobuf.out.size - iobuf.out.len + 1, PIO_NEED_OUTROOM); } if (iobuf.msg.len) perform_io(iobuf.msg.size, PIO_NEED_MSGROOM); } void write_shortint(int f, unsigned short x) { char b[2]; b[0] = (char)x; b[1] = (char)(x >> 8); write_buf(f, b, 2); } void write_int(int f, int32 x) { char b[4]; SIVAL(b, 0, x); write_buf(f, b, 4); } void write_varint(int f, int32 x) { char b[5]; uchar bit; int cnt = 4; SIVAL(b, 1, x); while (cnt > 1 && b[cnt] == 0) cnt--; bit = ((uchar)1<<(7-cnt+1)); if (CVAL(b, cnt) >= bit) { cnt++; *b = ~(bit-1); } else if (cnt > 1) *b = b[cnt] | ~(bit*2-1); else *b = b[cnt]; write_buf(f, b, cnt); } void write_varlong(int f, int64 x, uchar min_bytes) { char b[9]; uchar bit; int cnt = 8; SIVAL(b, 1, x); #if SIZEOF_INT64 >= 8 SIVAL(b, 5, x >> 32); #else if (x <= 0x7FFFFFFF && x >= 0) memset(b + 5, 0, 4); else { rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n"); exit_cleanup(RERR_UNSUPPORTED); } #endif while (cnt > min_bytes && b[cnt] == 0) cnt--; bit = ((uchar)1<<(7-cnt+min_bytes)); if (CVAL(b, cnt) >= bit) { cnt++; *b = ~(bit-1); } else if (cnt > min_bytes) *b = b[cnt] | ~(bit*2-1); else *b = b[cnt]; write_buf(f, b, cnt); } /* * Note: int64 may actually be a 32-bit type if ./configure couldn't find any * 64-bit types on this platform. */ void write_longint(int f, int64 x) { char b[12], * const s = b+4; SIVAL(s, 0, x); if (x <= 0x7FFFFFFF && x >= 0) { write_buf(f, s, 4); return; } #if SIZEOF_INT64 < 8 rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n"); exit_cleanup(RERR_UNSUPPORTED); #else memset(b, 0xFF, 4); SIVAL(s, 4, x >> 32); write_buf(f, b, 12); #endif } void write_buf(int f, const char *buf, size_t len) { size_t pos, siz; if (f != iobuf.out_fd) { safe_write(f, buf, len); goto batch_copy; } if (iobuf.out.len + len > iobuf.out.size) perform_io(len, PIO_NEED_OUTROOM); pos = iobuf.out.pos + iobuf.out.len; /* Must be set after any flushing. */ if (pos >= iobuf.out.size) pos -= iobuf.out.size; /* Handle a split copy if we wrap around the end of the circular buffer. */ if (pos >= iobuf.out.pos && (siz = iobuf.out.size - pos) < len) { memcpy(iobuf.out.buf + pos, buf, siz); memcpy(iobuf.out.buf, buf + siz, len - siz); } else memcpy(iobuf.out.buf + pos, buf, len); iobuf.out.len += len; total_data_written += len; batch_copy: if (f == write_batch_monitor_out) safe_write(batch_fd, buf, len); } /* Write a string to the connection */ void write_sbuf(int f, const char *buf) { write_buf(f, buf, strlen(buf)); } void write_byte(int f, uchar c) { write_buf(f, (char *)&c, 1); } void write_vstring(int f, const char *str, int len) { uchar lenbuf[3], *lb = lenbuf; if (len > 0x7F) { if (len > 0x7FFF) { rprintf(FERROR, "attempting to send over-long vstring (%d > %d)\n", len, 0x7FFF); exit_cleanup(RERR_PROTOCOL); } *lb++ = len / 0x100 + 0x80; } *lb = len; write_buf(f, (char*)lenbuf, lb - lenbuf + 1); if (len) write_buf(f, str, len); } /* Send a file-list index using a byte-reduction method. */ void write_ndx(int f, int32 ndx) { static int32 prev_positive = -1, prev_negative = 1; int32 diff, cnt = 0; char b[6]; if (protocol_version < 30 || read_batch) { write_int(f, ndx); return; } /* Send NDX_DONE as a single-byte 0 with no side effects. Send * negative nums as a positive after sending a leading 0xFF. */ if (ndx >= 0) { diff = ndx - prev_positive; prev_positive = ndx; } else if (ndx == NDX_DONE) { *b = 0; write_buf(f, b, 1); return; } else { b[cnt++] = (char)0xFF; ndx = -ndx; diff = ndx - prev_negative; prev_negative = ndx; } /* A diff of 1 - 253 is sent as a one-byte diff; a diff of 254 - 32767 * or 0 is sent as a 0xFE + a two-byte diff; otherwise we send 0xFE * & all 4 bytes of the (non-negative) num with the high-bit set. */ if (diff < 0xFE && diff > 0) b[cnt++] = (char)diff; else if (diff < 0 || diff > 0x7FFF) { b[cnt++] = (char)0xFE; b[cnt++] = (char)((ndx >> 24) | 0x80); b[cnt++] = (char)ndx; b[cnt++] = (char)(ndx >> 8); b[cnt++] = (char)(ndx >> 16); } else { b[cnt++] = (char)0xFE; b[cnt++] = (char)(diff >> 8); b[cnt++] = (char)diff; } write_buf(f, b, cnt); } /* Receive a file-list index using a byte-reduction method. */ int32 read_ndx(int f) { static int32 prev_positive = -1, prev_negative = 1; int32 *prev_ptr, num; char b[4]; if (protocol_version < 30) return read_int(f); read_buf(f, b, 1); if (CVAL(b, 0) == 0xFF) { read_buf(f, b, 1); prev_ptr = &prev_negative; } else if (CVAL(b, 0) == 0) return NDX_DONE; else prev_ptr = &prev_positive; if (CVAL(b, 0) == 0xFE) { read_buf(f, b, 2); if (CVAL(b, 0) & 0x80) { b[3] = CVAL(b, 0) & ~0x80; b[0] = b[1]; read_buf(f, b+1, 2); num = IVAL(b, 0); } else num = (UVAL(b,0)<<8) + UVAL(b,1) + *prev_ptr; } else num = UVAL(b, 0) + *prev_ptr; *prev_ptr = num; if (prev_ptr == &prev_negative) num = -num; return num; } /* Read a line of up to bufsiz-1 characters into buf. Strips * the (required) trailing newline and all carriage returns. * Returns 1 for success; 0 for I/O error or truncation. */ int read_line_old(int fd, char *buf, size_t bufsiz, int eof_ok) { assert(fd != iobuf.in_fd); bufsiz--; /* leave room for the null */ while (bufsiz > 0) { if (safe_read(fd, buf, 1) == 0) { if (eof_ok) break; return 0; } if (*buf == '\0') return 0; if (*buf == '\n') break; if (*buf != '\r') { buf++; bufsiz--; } } *buf = '\0'; return bufsiz > 0; } void io_printf(int fd, const char *format, ...) { va_list ap; char buf[BIGPATHBUFLEN]; int len; va_start(ap, format); len = vsnprintf(buf, sizeof buf, format, ap); va_end(ap); if (len < 0) exit_cleanup(RERR_PROTOCOL); if (len > (int)sizeof buf) { rprintf(FERROR, "io_printf() was too long for the buffer.\n"); exit_cleanup(RERR_PROTOCOL); } write_sbuf(fd, buf); } /* Setup for multiplexing a MSG_* stream with the data stream. */ void io_start_multiplex_out(int fd) { io_flush(FULL_FLUSH); if (msgs2stderr && DEBUG_GTE(IO, 2)) rprintf(FINFO, "[%s] io_start_multiplex_out(%d)\n", who_am_i(), fd); if (!iobuf.msg.buf) alloc_xbuf(&iobuf.msg, ROUND_UP_1024(IO_BUFFER_SIZE)); iobuf.out_empty_len = 4; /* See also OUT_MULTIPLEXED */ io_start_buffering_out(fd); iobuf.raw_data_header_pos = iobuf.out.pos + iobuf.out.len; iobuf.out.len += 4; } /* Setup for multiplexing a MSG_* stream with the data stream. */ void io_start_multiplex_in(int fd) { if (msgs2stderr && DEBUG_GTE(IO, 2)) rprintf(FINFO, "[%s] io_start_multiplex_in(%d)\n", who_am_i(), fd); iobuf.in_multiplexed = 1; /* See also IN_MULTIPLEXED */ io_start_buffering_in(fd); } int io_end_multiplex_in(int mode) { int ret = iobuf.in_multiplexed ? iobuf.in_fd : -1; if (msgs2stderr && DEBUG_GTE(IO, 2)) rprintf(FINFO, "[%s] io_end_multiplex_in(mode=%d)\n", who_am_i(), mode); iobuf.in_multiplexed = 0; if (mode == MPLX_SWITCHING) iobuf.raw_input_ends_before = 0; else assert(iobuf.raw_input_ends_before == 0); if (mode != MPLX_TO_BUFFERED) io_end_buffering_in(mode); return ret; } int io_end_multiplex_out(int mode) { int ret = iobuf.out_empty_len ? iobuf.out_fd : -1; if (msgs2stderr && DEBUG_GTE(IO, 2)) rprintf(FINFO, "[%s] io_end_multiplex_out(mode=%d)\n", who_am_i(), mode); if (mode != MPLX_TO_BUFFERED) io_end_buffering_out(mode); else io_flush(FULL_FLUSH); iobuf.out.len = 0; iobuf.out_empty_len = 0; return ret; } void start_write_batch(int fd) { /* Some communication has already taken place, but we don't * enable batch writing until here so that we can write a * canonical record of the communication even though the * actual communication so far depends on whether a daemon * is involved. */ write_int(batch_fd, protocol_version); if (protocol_version >= 30) write_byte(batch_fd, compat_flags); write_int(batch_fd, checksum_seed); if (am_sender) write_batch_monitor_out = fd; else write_batch_monitor_in = fd; } void stop_write_batch(void) { write_batch_monitor_out = -1; write_batch_monitor_in = -1; }