
USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 249

Uncovering Bugs in Distributed Storage Systems
during Testing (not in Production!)

Pantazis Deligiannis†1, Matt McCutchen�1, Paul Thomson†1, Shuo Chen�

Alastair F. Donaldson†, John Erickson�, Cheng Huang�, Akash Lal�

Rashmi Mudduluru�, Shaz Qadeer�, Wolfram Schulte�

†Imperial College London, �Massachusetts Institute of Technology, �Microsoft

Abstract
Testing distributed systems is challenging due to mul-
tiple sources of nondeterminism. Conventional testing
techniques, such as unit, integration and stress testing,
are ineffective in preventing serious but subtle bugs from
reaching production. Formal techniques, such as TLA+,
can only verify high-level specifications of systems at the
level of logic-based models, and fall short of checking
the actual executable code. In this paper, we present a
new methodology for testing distributed systems. Our
approach applies advanced systematic testing techniques
to thoroughly check that the executable code adheres
to its high-level specifications, which significantly im-
proves coverage of important system behaviors.

Our methodology has been applied to three distributed
storage systems in the Microsoft Azure cloud computing
platform. In the process, numerous bugs were identified,
reproduced, confirmed and fixed. These bugs required a
subtle combination of concurrency and failures, making
them extremely difficult to find with conventional testing
techniques. An important advantage of our approach is
that a bug is uncovered in a small setting and witnessed
by a full system trace, which dramatically increases the
productivity of debugging.

1 Introduction

Distributed systems are notoriously hard to design, im-
plement and test [6, 31, 20, 27, 35]. This challenge is due
to many sources of nondeterminism [7, 23, 32], such as
unexpected node failures, the asynchronous interaction
between system components, data losses due to unreli-
able communication channels, the use of multithreaded
code to exploit multicore machines, and interaction with
clients. All these sources of nondeterminism can easily
create Heisenbugs [16, 38], corner-case bugs that are dif-
ficult to detect, diagnose and fix. These bugs might hide

1Part of the work was done while interning at Microsoft.

inside a code path that can only be triggered by a spe-
cific interleaving of concurrent events and only manifest
under extremely rare conditions [16, 38], but the conse-
quences can be catastrophic [1, 44].

Developers of production distributed systems use
many testing techniques, such as unit testing, integra-
tion testing, stress testing, and fault injection. In spite of
extensive use of these testing methods, many bugs that
arise from subtle combinations of concurrency and fail-
ure events are missed during testing and get exposed only
in production. However, allowing serious bugs to reach
production can cost organizations a lot of money [42] and
lead to customer dissatisfaction [1, 44].

We interviewed technical leaders and senior managers
in Microsoft Azure regarding the top problems in dis-
tributed system development. The consensus was that
one of the most critical problems today is how to improve
testing coverage so that bugs can be uncovered during
testing and not in production. The need for better testing
techniques is not specific to Microsoft; other companies,
such as Amazon and Google, have acknowledged [7, 39]
that testing methodologies have to improve to be able to
reason about the correctness of increasingly more com-
plex distributed systems that are used in production.

Recently, the Amazon Web Services (AWS) team used
formal methods “to prevent serious but subtle bugs from
reaching production” [39]. The gist of their approach
is to extract the high-level logic from a production sys-
tem, represent this logic as specifications in the expres-
sive TLA+ [29] language, and finally verify the specifi-
cations using a model checker. While highly effective,
as demonstrated by its use in AWS, this approach falls
short of “verifying that executable code correctly imple-
ments the high-level specification”’ [39], and the AWS
team admits that it is “not aware of any such tools that
can handle distributed systems as large and complex as
those being built at Amazon” [39].

We have found that checking high-level specifications
is necessary but not sufficient, due to the gap between

250 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

the specification and the executable code. Our goal is to
bridge this gap. We propose a new methodology that
validates high-level specifications directly on the exe-
cutable code. Our methodology is different from prior
approaches that required developers to either switch to an
unfamiliar domain specific language [25, 10], or manu-
ally annotate and instrument their code [45]. Instead, we
allow developers to systematically test production code
by writing test harnesses in C#, a mainstream program-
ming language. This significantly lowered the accep-
tance barrier for adoption by the Microsoft Azure team.

Our testing methodology is based on P# [9], an exten-
sion of C# that provides support for modeling, specifica-
tion, and systematic testing of distributed systems written
in the Microsoft .NET framework. To use P# for testing,
the programmer has to augment the original system with
three artifacts: a model of the nondeterministic execution
environment of the system; a test harness that drives the
system towards interesting behaviors; and safety or live-
ness specifications. P# then systematically exercises the
test harness and validates program behaviors against the
provided specifications.

The original P# paper [9] discussed language design
issues and data race detection for programs written in P#,
whereas this work focuses on using P# to test three dis-
tributed storage systems inside Microsoft: Azure Storage
vNext; Live Table Migration; and Azure Service Fabric.
We uncovered numerous bugs in these systems, includ-
ing a subtle liveness bug that only intermittently man-
ifested during stress testing for months without being
fixed. Our testing approach uncovered this bug in a very
small setting, which made it easy for developers to ex-
amine traces, identify, and fix the problem.

To summarize, our contributions are as follows:

• We present a new methodology for modeling, spec-
ifying properties of correctness, and systematically
testing real distributed systems with P#.

• We discuss our experience of using P# to test three
distributed storage systems built on top of Microsoft
Azure, finding subtle bugs that could not be found
with traditional testing techniques.

• We evaluate the cost and benefits of using our ap-
proach, and show that P# can detect bugs in a small
setting and with easy to understand traces.

2 Testing Distributed Systems with P#

The goal of our work is to find bugs in distributed sys-
tems before they reach production. Typical distributed
systems consist of multiple components that interact with
each other via message passing. If messages—or unex-
pected failures and timeouts—are not handled properly,

they can lead to subtle bugs. To expose these bugs, we
use P# [9], an extension of the C# language that provides:
(i) language support for specifying properties of correct-
ness, and modeling the environment of distributed sys-
tems written in .NET; and (ii) a systematic testing engine
that can explore interleavings between distributed events,
such as the nondeterministic order of message deliveries,
client requests, failures and timeouts.

Modeling using P# involves three core activities. First,
the developer must modify the original system so that
messages are not sent through the real network, but
are instead dispatched through the PSharp.Send(...)

method. Such modification does not need to be invasive,
as it can be performed using virtual method dispatch, a
C# language feature widely used for testing. Second, the
developer must write a P# test harness that drives the
system towards interesting behaviors by nondeterminis-
tically triggering various events (see §2.3). The harness
is essentially a model of the environment of the system.
The purpose of these first two activities is to explicitly
declare all sources of nondeterminism in the system us-
ing P#. Finally, the developer must specify the crite-
ria for correctness of an execution of the system-under-
test. Specifications in P# can encode either safety or live-
ness [28] properties (see §2.4 and §2.5).

During testing, the P# runtime is aware of all sources
of nondeterminism that were declared during modeling,
and exploits this knowledge to create a scheduling point
each time a nondeterministic choice has to be taken. The
P# testing engine will serialize (in a single-box) the sys-
tem, and repeatedly execute it from start to completion,
each time exploring a potentially different set of nonde-
terministic choices, until it either reaches a user-supplied
bound (e.g. in number of executions or time), or it hits a
safety or liveness property violation. This testing process
is fully automatic and has no false-positives (assuming an
accurate test harness). After a bug is discovered, P# gen-
erates a trace that represents the buggy schedule, which
can then be replayed to reproduce the bug. In contrast to
logs typically generated during production, the P# trace
provides a global order of all communication events, and
thus is easier to debug.

Due to the highly asynchronous nature of distributed
systems, the number of possible states that these sys-
tems can reach is exponentially large. Tools such as
MODIST [48] and dBug [45] focus on testing unmodi-
fied distributed systems, but this can easily lead to state-
space explosion when trying to exhaustively explore the
entire state-space of a production-scale distributed stor-
age system, such as the Azure Storage vNext. On the
other hand, techniques such as TLA+ [29] have been
successfully used in industry to verify specifications of
complex distributed systems [39], but they are unable to
verify the actual implementation.

2

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 251

receive msg {
 case ReplReq:
 // Store received data
 store(message.Val);
 case Timeout:
 // Send server the log
 // upon timeout
 this.Server.send(Sync,
 this.Id, this.Log);
}

ClientServer Storage Node

Timer

receive msg {
 case ClientReq:
 this.Data = message.Val;
 // Replicate data to all nodes
 foreach (sn in this.Nodes)
 sn.send(ReplReq, this.Data);
 case Sync:
 Node node = message.Id;
 Log log = message.Log;
 doSync(node, log);
}

while (hasNextRequest()) {
 this.Server.send(ClientReq,
 this.DataToReplicate);
 receive(Ack); // Wait for ack
}

// Send timeout to node when
// countdown reaches 0
if (this.Countdown == 0)
 this.SN.send(Timeout);

doSync (Node sn, Log log) {
 // If the storage log is not
 // up-to-date, replicate
 if (!isUpToDate(log))
 sn.send(ReplReq, this.Data);
 else {
 this.NumReplicas++;
 if (this.NumReplicas == 3)
 this.Client.send(Ack);
 }
}

Figure 1: Pseudocode of a simple distributed storage system that replicates data sent by a client.

In this work, we are proposing a solution between the
above two extremes: test the real implementation of one
or more components against a modeled in P# environ-
ment. The benefit of our approach is that it can detect
bugs in the actual implementation by exploring a much
reduced state-space. Note that testing with P# does not
come for free; developers have to invest effort and time
into building a test harness using P#. However, develop-
ers already spend significant time in building test suites
for distributed systems prior to deployment. The P# ap-
proach augments this effort; by investing time in model-
ing the environment, it offers dividends by finding more
bugs (see §6). In principle, our methodology is not spe-
cific to P# and the .NET framework, and can be used
in combination with any other programming framework
that has equivalent capabilities.

2.1 The P# programming model

P# programs consist of multiple state machines that com-
municate with each other asynchronously by exchanging
events. In the case of distributed systems, P# events can
be used to model regular messages between system com-
ponents, failures or timeouts. A P# machine declaration
is similar to a C# class declaration, but a machine also
contains an event queue, and one or more states. Each
state can register actions to handle incoming events.

P# machines run concurrently with each other, each
executing an event handling loop that dequeues the next
event from the queue and handles it by invoking the reg-
istered action. An action might transition the machine
to a new state, create a new machine, send an event to a
machine, access a field or call a method. In P#, a send
operation is non-blocking; the event is simply enqueued
into the queue of the target machine, which will dequeue
and handle the event concurrently. All this functionality
is provided in a lightweight runtime library, built on top
of Microsoft’s Task Parallel Library [33].

2.2 An example distributed system

Figure 1 presents the pseudocode of a simple distributed
storage system that was contrived for the purposes of ex-

plaining our testing methodology. The system consists
of a client, a server and three storage nodes (SNs). The
client sends the server a ClientReq message that con-
tains data to be replicated, and then waits to get an ac-
knowledgement before sending the next request. When
the server receives ClientReq, it first stores the data lo-
cally (in the Data field), and then broadcasts a ReplReq
message to all SNs. When an SN receives ReplReq, it
handles the message by storing the received data locally
(using the store method). Each SN has a timer installed,
which sends periodic Timeout messages. Upon receiv-
ing Timeout, an SN sends a Sync message to the server
that contains the storage log. The server handles Sync by
calling the isUpToDate method to check if the SN log is
up-to-date. If it is not, the server sends a repeat ReplReq
message to the outdated SN. If the SN log is up-to-date,
then the server increments a replica counter by one. Fi-
nally, when there are three replicas available, the server
sends an Ack message to the client.

There are two bugs in the above example. The first
bug is that the server does not keep track of unique repli-
cas. The replica counter increments upon each up-to-
date Sync, even if the syncing SN is already considered
a replica. This means that the server might send Ack

when fewer than three replicas exist, which is erroneous
behavior. The second bug is that the server does not re-
set the replica counter to 0 upon sending an Ack. This
means that when the client sends another ClientReq, it
will never receive Ack, and thus block indefinitely.

2.3 Modeling the example system

To systematically test the example of Figure 1, the devel-
oper must first create a P# test harness, and then specify
the correctness properties of the system. Figure 2 illus-
trates a test harness that can find the two bugs discussed
in §2.2. Each box in the figure represents a concurrently
running P# machine, while an arrow represents an event
being sent from one machine to another. We use three
types of boxes: (i) a box with rounded corners and thick
border denotes a real component wrapped inside a P#
machine; (ii) a box with thin border denotes a modeled

3

252 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Modeled
Storage Node

Modeled
Storage Node

Modeled
Storage NodeLiveness Monitor

Safety Monitor Modeled
Timer

Timeout
Sync

ReplReq

ClientReq

Notify

NotifyAckModeled
Client

Server

Figure 2: P# test harness for the Figure 1 example.

component in P#; and (iii) a box with dashed border de-
notes a special P# machine used for safety or liveness
checking (see §2.4 and §2.5).

We do not model the server component since we want
to test its actual implementation. The server is wrapped
inside a P# machine, which is responsible for: (i) send-
ing events via the PSharp.Send(...) method, instead
of the real network; and (ii) delivering received events to
the wrapped component. We model the SNs so that they
store data in memory rather than on disk (which could be
inefficient during testing). We also model the client so
that it can drive the system by repeatedly sending a non-
deterministically generated ClientReq, and then wait-
ing for an Ack message. Finally, we model the timer so
that P# takes control of all time-related nondeterminism
in the system. This allows the P# runtime to control when
a Timeout event will be sent to the SNs during testing,
and systematically explore different schedules.

P# uses object-oriented language features such as in-
terfaces and virtual method dispatch to connect the real
code with the modeled code. Developers in industry are
used to working with such features, and heavily employ
them in testing production systems. In our experience,
this significantly lowers the bar for engineering teams in-
side Microsoft to embrace P# for testing.

In §2.4 and §2.5, we discuss how safety and liveness
specifications can be expressed in P# to check if the ex-
ample system is correct. The details of how P# was used
to model and test real distributed storage systems in Mi-
crosoft are covered in §3, §4 and §5. Interested readers
can also refer to the P# GitHub repository2 to find a man-
ual and samples (e.g. Paxos [30] and Raft [40]).

2.4 Specifying safety properties in P#
Safety property specifications generalize the notion of
source code assertions; a safety violation is a finite trace
leading to an erroneous state. P# supports the usual as-
sertions for specifying safety properties that are local to
a P# machine, and also provides a way to specify global
assertions by using a safety monitor [10], a special P#
machine that can receive, but not send, events.

2https://github.com/p-org/PSharp

A safety monitor maintains local state that is modi-
fied in response to events received from ordinary (non-
monitor) machines. This local state is used to maintain a
history of the computation that is relevant to the property
being specified. An erroneous global behavior is flagged
via an assertion on the private state of the safety mon-
itor. Thus, a monitor cleanly separates instrumentation
state required for specification (inside the monitor) from
program state (outside the monitor).

The first bug in the example of §2.2 is a safety bug.
To find it, the developer can write a safety monitor (see
Figure 2) that contains a map from unique SN ids to a
Boolean value, which denotes if the SN is a replica or
not. Each time an SN replicates the latest data, it noti-
fies the monitor to update the map. Each time the server
issues an Ack, it also notifies the monitor. If the mon-
itor detects that an Ack was sent without three replicas
actually existing, a safety violation is triggered.

2.5 Specifying liveness properties in P#

Liveness property specifications generalize nontermina-
tion; a liveness violation is an infinite trace that exhibits
lack of progress. Typically, a liveness property is spec-
ified via a temporal logic formula [41, 29]. We take a
different approach and allow the developers to write a
liveness monitor [10]. Similar to a safety monitor, a live-
ness monitor can receive, but not send, events.

A liveness monitor contains two special types of
states: hot and cold. A hot state denotes a point in the
execution where progress is required but has not hap-
pened yet; e.g. a node has failed but a new one has not
launched yet. A liveness monitor enters a hot state when
it is notified that the system must make progress. The
liveness monitor leaves the hot state and enters the cold
state when it is notified that the system has progressed.
An infinite execution is erroneous if the liveness mon-
itor is in the hot state for an infinitely long period of
time. Our liveness monitors can encode arbitrary tem-
poral logic properties.

A liveness violation is witnessed by an infinite exe-
cution in which all concurrently executing P# machines
are fairly scheduled. Since it is impossible to generate
an infinite execution by executing a program for a finite
amount of time, our implementation of liveness check-
ing in P# approximates an infinite execution using sev-
eral heuristics. In this work, we consider an execution
longer than a large user-supplied bound as an “infinite”
execution [25, 37]. Note that checking for fairness is not
relevant when using this heuristic, due to our pragmatic
use of a large bound.

The second bug in the example of §2.2 is a liveness
bug. To detect it, the developer can write a liveness mon-
itor (see Figure 2) that transitions from a hot state, which

4

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 253

Extent
Node 3

Extent
Node 1

...

Extent
Manager 1

Extent
Node 2

Extent
Node M

...

Storage Storage Storage Storage

Network Engine

Extent
Manager 2

Network Engine

Extent
Manager N

Network Engine

Figure 3: Top-level components for extent management
in Microsoft Azure Storage vNext.

denotes that the client sent a ClientReq and waits for
an Ack, to a cold state, which denotes that the server has
sent an Ack in response to the last ClientReq. Each time
a server receives a ClientReq, it notifies the monitor to
transition to the hot state. Each time the server issues an
Ack, it notifies the monitor to transition to the cold state.
If the monitor is in a hot state when the bounded infinite
execution terminates, a liveness violation is triggered.

3 Case Study: Azure Storage vNext

Microsoft Azure Storage is a cloud storage system that
provides customers the ability to store seemingly limit-
less amounts of data. It has grown from tens of petabytes
in 2010 to exabytes in 2015, with the total number of
objects stored exceeding 60 trillion [17].

Azure Storage vNext is the next generation storage
system currently being developed for Microsoft Azure,
where the primary design target is to scale the storage
capacity by more than 100×. Similar to the current sys-
tem, vNext employs containers, called extents, to store
data. Extents can be several gigabytes each, consisting
of many data blocks, and are replicated over multiple
Extent Nodes (ENs). However, in contrast to the current
system, which uses a Paxos-based, centralized mapping
from extents to ENs [5], vNext achieves scalability by
using a distributed mapping. In vNext, extents are di-
vided into partitions, with each partition managed by a
lightweight Extent Manager (ExtMgr). This partitioning
is illustrated in Figure 3.

One of the responsibilities of an ExtMgr is to ensure
that every managed extent maintains enough replicas in
the system. To achieve this, an ExtMgr receives frequent
periodic heartbeat messages from every EN that it man-
ages. EN failure is detected by missing heartbeats. An
ExtMgr also receives less frequent, but still periodic, syn-
chronization reports from every EN. The sync reports list
all the extents (and associated metadata) stored on the
EN. Based on these two types of messages, an ExtMgr
identifies which ENs have failed, and which extents are
affected by the failure and are missing replicas as a re-

Extent
Manager

Test Harness written in P#

Testing
Driver

Modeled
Extent Node Modeled

Extent Node

Modeled
Extent Node

(real vNext code)
Repair MonitorModeled

Timer

Figure 4: Real Extent Manager with its P# test harness
(each box represents one P# machine).

sult. The ExtMgr then schedules tasks to repair the af-
fected extents and distributes the tasks to the remaining
ENs. The ENs then repair the extents from the existing
replicas and lazily update the ExtMgr via their next pe-
riodic sync reports. All the communications between an
ExtMgr and the ENs occur via network engines installed
in each component of vNext (see Figure 3).

To ensure correctness, the developers of vNext have
instrumented extensive, multiple levels of testing:

1. Unit testing, in which emulated heartbeats and sync
reports are sent to an ExtMgr. These tests check that
the messages are processed as expected.

2. Integration testing, in which an ExtMgr is launched
together with multiple ENs. An EN failure is subse-
quently injected. These tests check that the affected
extents are eventually repaired.

3. Stress testing, in which an ExtMgr is launched to-
gether with multiple ENs and many extents. The
test keeps repeating the following process: injects
an EN failure, launches a new EN and checks that
the affected extents are eventually repaired.

Despite the extensive testing efforts, the vNext develop-
ers were plagued for months by an elusive bug in the
ExtMgr logic. All the unit test suites and integration test
suites successfully passed on each test run. However, the
stress test suite failed from time to time after very long
executions; in these cases, certain replicas of some ex-
tents failed without subsequently being repaired.

This bug proved difficult to identify, reproduce and
troubleshoot. First, an extent never being repaired is not
a property that can be easily checked. Second, the bug
appeared to manifest only in very long executions. Fi-
nally, by the time that the bug did manifest, very long
execution traces had been collected, which made manual
inspection tedious and ineffective.

To uncover the elusive extent repair bug in Azure Stor-
age vNext, its developers wrote a test harness using P#.
The developers expected that it was more likely for the

5

254 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

// wrapping the target vNext component in a P# machine
class ExtentManagerMachine : Machine {
private ExtentManager ExtMgr; // real vNext code

void Init() {
ExtMgr = new ExtentManager();
ExtMgr.NetEngine = new ModelNetEngine(); // model network
ExtMgr.DisableTimer(); // disable internal timer

}

[OnEvent(ExtentNodeMessageEvent, DeliverMessage)]
void DeliverMessage(ExtentNodeMessage msg) {
// relay messages from Extent Node to Extent Manager
ExtMgr.ProcessMessage(msg);

}

[OnEvent(TimerTickEvent, ProcessExtentRepair)]
void ProcessExtentRepair() {
// extent repair loop driven by external timer
ExtMgr.ProcessEvent(new ExtentRepairEvent());

}
}

Figure 5: The real Extent Manager is wrapped inside the
ExtentManager P# machine.

bug to occur in the ExtMgr logic, rather than in the EN
logic. Hence, they focused on testing the real ExtMgr
using modeled ENs. The test harness for vNext consists
of the following P# machines (as shown in Figure 4):

ExtentManager acts as a thin wrapper machine for the
real ExtMgr component in vNext (see §3.1).

ExtentNode is a simple model of an EN (see §3.2).

Timer exploits the nondeterministic choice generation
available in P# to model timeouts (see §3.3).

TestingDriver is responsible for driving testing scenar-
ios, relaying messages between machines, and in-
jecting failures (see §3.4).

RepairMonitor collects EN-related state to check if the
desired liveness property is satisfied (see §3.5).

3.1 The ExtentManager machine
The real ExtMgr in vNext, which is our system-under-
test, is wrapped inside the ExtentManager machine, as
illustrated in the code snippet of Figure 5.

Real Extent Manager. The real ExtMgr (see Fig-
ure 6) contains two data structures: ExtentCenter and
ExtentNodeMap. The ExtentCenter maps extents to
their hosting ENs. It is updated upon receiving a periodic
sync report from an EN. Recall that a sync report from a
particular EN lists all the extents stored at the EN. Its pur-
pose is to update the ExtMgr’s possibly out-of-date view
of the EN with the ground truth. The ExtentNodeMap

maps ENs to their latest heartbeat times.
ExtMgr internally runs a periodic EN expiration loop

that is responsible for removing ENs that have been
missing heartbeats for an extended period of time, as

Extent Manager
ExtentCenter

(extent → EN locations)
updated upon SyncReport

ExtentNodeMap
(EN → last Heartbeat)

updated upon Heartbeat

RepairRequest to
ENs (on demand)

EN Expiration Loop
- remove expired ENs
 from ExtentNodeMap
- delete extents from
 ExtentCenter

SyncReport from
ENs (every 5 min)

Heartbeat from
ENs (every 5 sec)

Extent Repair Loop
- examine all extents in
 ExtentCenter
- schedule repair of
 extents

Figure 6: Internal components of the real Extent Man-
ager in Microsoft Azure Storage vNext.

// network interface in vNext
class NetworkEngine {
public virtual void SendMessage(Socket s, Message msg);

}

// modeled engine for intercepting Extent Manager messages
class ModelNetEngine : NetworkEngine {
public override void SendMessage(Socket s, Message msg) {
// intercept and relay Extent Manager messages
PSharp.Send(TestingDriver, new ExtMgrMsgEvent(), s, msg);

}
}

Figure 7: Modeled vNext network engine.

well as cleaning up the corresponding extent records in
ExtentCenter. In addition, ExtMgr runs a periodic ex-
tent repair loop that examines all the ExtentCenter

records, identifies extents with missing replicas, sched-
ules extent repair tasks and sends them to the ENs.

Intercepting network messages. The real ExtMgr
uses a network engine to asynchronously send messages
to ENs. The P# test harness models the original network
engine in vNext by overriding the original implementa-
tion. The modeled network engine (see Figure 7) inter-
cepts all outbound messages from the ExtMgr, and in-
vokes PSharp.Send(...) to asynchronously relay the
messages to TestingDriver machine, which is respon-
sible for dispatching the messages to the corresponding
ENs. This modeled network engine replaces the real net-
work engine in the wrapped ExtMgr (see Figure 5).

Intercepting all network messages and dispatching
them through P# is important for two reasons. First, it
allows P# to systematically explore the interleavings be-
tween asynchronous event handlers in the system. Sec-
ond, the modeled network engine could leverage the sup-
port for controlled nondeterministic choices in P#, and
choose to drop the messages in a nondeterministic fash-
ion, in case emulating message loss is desirable (not
shown in this example).

Messages coming from ExtentNode machines do not
go through the modeled network engine; they are in-
stead delivered to the ExtentManager machine and trig-
ger an action that invokes the messages on the wrapped

6

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 255

// modeling Extent Node in P#
class ExtentNodeMachine : Machine {
// leverage real vNext component whenever appropriate
private ExtentNode.ExtentCenter ExtCtr;

[OnEvent(ExtentCopyResponseEvent, ProcessCopyResponse)]
void ProcessCopyResponse(ExtentCopyResponse response) {
// extent copy response from source replica
if (IsCopySucceeded(response)) {
var rec = GetExtentRecord(response);
ExtCtr.AddOrUpdate(rec); // update ExtentCenter

}
}

// extent node sync logic
[OnEvent(TimerTickEvent, ProcessExtentNodeSync)]
void ProcessExtentNodeSync() {
var sync = ExtCtr.GetSyncReport(); // prepare sync report
PSharp.Send(ExtentManagerMachine,
new ExtentNodeMessageEvent(), sync);

}

// extent node failure logic
[OnEvent(FailureEvent, ProcessFailure)]
void ProcessFailure() {
// notifies the monitor that this EN failed
PSharp.Notify<RepairMonitor>(new ENFailedEvent(), this);
PSharp.Halt(); // terminate this P# machine

}
}

Figure 8: Code snippet of the modeled EN.

ExtMgr with ExtMgr.ProcessMessage (see Figure 5).
The benefit of this approach is that the real ExtMgr can
be tested without modifying the original communication-
related code; the ExtMgr is simply unaware of the P# test
harness and behaves as if it is running in a real distributed
environment and communicating with real ENs.

3.2 The ExtentNode machine
The ExtentNode machine is a simplified version of the
original EN. The machine omits most of the complex de-
tails of a real EN, and only models the necessary logic for
testing. This modeled logic includes: repairing an extent
from its replica, and sending sync reports and heartbeat
messages periodically to ExtentManager.

The P# test harness leverages components of the real
vNext system whenever it is appropriate. For example,
ExtentNode re-uses the ExtentCenter data structure,
which is used inside a real EN for extent bookkeeping.
In the modeled extent repair logic, ExtentNode takes
action upon receiving an extent repair request from the
ExtentManager machine. It sends a copy request to a
source ExtentNode machine where a replica is stored.
After receiving an ExtentCopyRespEvent event from
the source machine, it updates the ExtentCenter, as il-
lustrated in Figure 8.

In the modeled EN sync logic, the machine is driven
by an external timer modeled in P# (see §3.3). It prepares
a sync report with extCtr.GetSyncReport(...), and
then asynchronously sends the report to ExtentManager
using PSharp.Send(...). The ExtentNode machine
also includes failure-related logic (see §3.4).

// modeling timer expiration in P#
class Timer : Machine {
Machine Target; // target machine

[OnEvent(RepeatedEvent, GenerateTimerTick)]
void GenerateTimerTick() {
// nondeterministic choice controlled by P#
if (PSharp.Nondet())
PSharp.Send(Target, new TimerTickEvent());

PSharp.Send(this, new RepeatedEvent()); // loop
}

}

Figure 9: Modeling timer expiration using P#.

// machine for driving testing scenarios in vNext
class TestingDriver : Machine {
private HashSet<Machine> ExtentNodes; // EN machines

void InjectNodeFailure() {
// nondeterministically choose an EN using P#
var node = (Machine)PSharp.Nondet(ExtentNodes);
// fail chosen EN
PSharp.Send(node, new FailureEvent());

}
}

Figure 10: Code snippet of the TestingDriver machine.

3.3 The Timer machine

System correctness should not hinge on the frequency of
any individual timer. Hence, it makes sense to delegate
all nondeterminism due to timing-related events to P#.
To achieve this, all the timers inside ExtMgr are disabled
(see Figure 5), and the EN expiration loop and the extent
repair loop are driven instead by timers modeled in P#,
an approach also used in previous work [10].3 Similarly,
ExtentNode machines do not have internal timers either.
Their periodic heartbeats and sync reports are also driven
by timers modeled in P#.

Figure 9 shows the Timer machine in the test har-
ness. Timer invokes the P# method Nondet(), which
generates a nondeterministic choice controlled by the P#
runtime. Using Nondet() allows the machine to non-
deterministically send a timeout event to its target (the
ExtentManager or ExtentNode machines). The P#
testing engine has the freedom to schedule arbitrary in-
terleavings between these timeout events and all other
regular system events.

3.4 The TestingDriver machine

The TestingDriver machine drives two testing scenar-
ios. In the first scenario, TestingDriver launches one
ExtentManager and three ExtentNode machines, with
a single extent on one of the ENs. It then waits for the
extent to be replicated at the remaining ENs. In the sec-
ond testing scenario, TestingDriver fails one of the

3We had to make a minor change to the real ExtMgr code to facil-
itate modeling: we added the DisableTimer method, which disables
the real ExtMgr timer so that it can be replaced with the P# timer.

7

256 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

ExtentNode machines and launches a new one. It then
waits for the extent to be repaired on the newly launched
ExtentNode machine.

Figure 10 illustrates how TestingDriver leverages
P# to inject nondeterministic failures. It uses Nondet()
to nondeterministically choose an ExtentNode machine,
and then sends a FailureEvent to the chosen machine
to emulate an EN failure. As shown in the earlier Fig-
ure 8, the chosen ExtentNode machine processes the
FailureEvent, notifies the liveness monitor of its fail-
ure (see §3.5) and terminates itself by invoking the P#
method Halt(). P# not only enumerates interleavings
of asynchronous event handlers, but also the values re-
turned by calls to Nondet(), thus enumerating different
failure scenarios.

3.5 The RepairMonitor liveness monitor
RepairMonitor is a P# liveness monitor (see §2.5) that
transitions between a cold and a hot state. Whenever an
EN fails, the monitor is notified with an ENFailedEvent
event. As soon as the number of extent replicas falls be-
low a specified target (three replicas in the current P#
test harness), the monitor transitions into the hot repair-
ing state, waiting for all missing replicas to be repaired.
Whenever an extent replica is repaired, RepairMonitor
is notified with an ExtentRepairedEvent event. When
the replica number reaches again the target, the monitor
transitions into the cold repaired state, as illustrated in
the code snippet of Figure 11.

In the extent repair testing scenarios, RepairMonitor
checks that it should always eventually end up in the
cold state. Otherwise, RepairMonitor is stuck in the
hot state for infinitely long. This indicates that the corre-
sponding execution sequence results in an extent replica
never being repaired, which is a liveness bug.

3.6 Liveness Bug in Azure Storage vNext
It took less than ten seconds for the P# testing engine to
report the first occurrence of a liveness bug in vNext (see
§6). Upon examining the debug trace, the developers of
vNext were able to quickly confirm the bug.

The original P# trace did not include sufficient details
to allow the developers to identify the root cause of the
problem. Fortunately, running the test harness took very
little time, so the developers were able to quickly iterate
and add more refined debugging outputs in each itera-
tion. After several iterations, the developers were able to
pinpoint the exact culprit and immediately propose a so-
lution for fixing the bug. Once the proposed solution was
implemented, the developers ran the test harness again.
No bugs were found during 100,000 executions, a pro-
cess that only took a few minutes.

class RepairMonitor : Monitor {
private HashSet<Machine> ExtentNodesWithReplica;

// cold state: repaired
cold state Repaired {
[OnEvent(ENFailedEvent, ProcessENFailure)]
void ProcessENFailure(ExtentNodeMachine en) {

ExtentNodesWithReplica.Remove(en);
if (ReplicaCount < Harness.REPLICA_COUNT_TARGET)
jumpto Repairing;

}
}

// hot state: repairing
hot state Repairing {
[OnEvent(ExtentRepairedEvent, ProcessRepairCompletion)]
void ProcessRepairCompletion(ExtentNodeMachine en) {
ExtentNodesWithReplica.Add(en);
if (ReplicaCount == Harness.REPLICA_COUNT_TARGET)
jumpto Repaired;

}
}

}

Figure 11: The RepairMonitor liveness monitor.

The liveness bug occurs in the second testing sce-
nario, where the TestingDriver machine fails one of
the ExtentNode machines and launches a new one.
RepairMonitor transitions to the hot repairing state and
is stuck in the state for infinitely long.

The following is one particular execution sequence re-
sulting in this liveness bug: (i) EN0 fails and is detected
by the EN expiration loop; (ii) EN0 is removed from
ExtentNodeMap; (iii) ExtentCenter is updated and the
replica count drops from 3 (which is the target) to 2; (iv)
ExtMgr receives a sync report from EN0; (v) the extent
center is updated and the replica count increases again
from 2 to 3. This is problematic since the replica count
is equal to the target, which means that the extent re-
pair loop will never schedule any repair task. At the
same time, there are only two true replicas in the sys-
tem, which is one less than the target. This execution
sequence leads to one missing replica; repeating this pro-
cess two more times would result in all replicas missing,
but ExtMgr would still think that all replicas are healthy.
If released to production, this bug would have caused a
very serious incident of customer data unavailability.

The culprit is in step (iv), where ExtMgr receives a
sync report from EN0 after deleting the EN. This inter-
leaving is exposed quickly by P#’s testing engine that has
the control to arbitrarily interleave events. It may also oc-
cur, albeit much less frequently, during stress testing due
to messages being delayed in the network. This explains
why the bug only occurs from time to time during stress
testing and requires long executions to manifest. In con-
trast, P# allows the bug to manifest quickly, the develop-
ers to iterate rapidly, the culprit to be identified promptly,
and the fix to be tested effectively and thoroughly, all of
which have the potential to vastly increase the productiv-
ity of distributed storage system development.

8

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 257

4 Case Study: Live Table Migration

Live Table Migration (MigratingTable) is a library de-
signed to transparently migrate a key-value data set be-
tween two Microsoft Azure tables [24] (called the old
table and the new table, or collectively the backend ta-
bles) while an application is accessing this data set. The
MigratingTable testing effort differs from the vNext ef-
fort in two significant ways: the P# test harness was de-
veloped along with the system rather than later; and it
checks complete compliance with an interface specifica-
tion rather than just a single liveness property. Indeed,
the P# test caught bugs throughout the development pro-
cess (see §6).

During migration, each application process creates its
own MigratingTable instance (MT) that refers to the
same backend tables (BTs). The application performs
all data access via the MT, which provides an interface
named IChainTable similar to that of an Azure table
(the MT assumes that the BTs provide the same inter-
face via an adapter). A migrator job moves the data in
the background. In the meantime, each logical read and
write operation issued to an MT is implemented via a se-
quence of backend operations on the BTs according to a
custom protocol. The protocol is designed to guarantee
that the output of the logical operations complies with
the IChainTable specification, as if all the operations
were performed on a single virtual table (VT). The goal
of using P# was to systematically test this property.

There are two main challenges behind testing Migrat-
ingTable: (i) the system is highly concurrent; and (ii) the
logical operations accept many parameters that affect the
behavior in different ways. The developers could have
chosen specific input sequences, but they were not confi-
dent that these sequences would cover the combinations
of parameters that might trigger bugs. Instead, they used
the P# Nondet() method to choose all of the parame-
ters independently within certain limits. They issued the
same operations to the MTs and to a reference table (RT)
running a reference implementation of the IChainTable
specification, and compared the output. This reference
implementation was reused for the BTs, since the goal
was not to test the real Azure tables.

The complete test environment is shown in Figure 12.
It consists of a Tables machine, which contains the BTs
and RT, and serializes all operations on these tables; a set
of Service machines that contain identically configured
MTs; and a Migrator machine that performs the back-
ground migration. Each Service machine issues a ran-
dom sequence of logical operations to its MT, which per-
forms the backend operations on the BTs via P# events.
The developers instrumented the MTs to report the lin-
earization point of each logical operation, i.e., the time at
which it takes effect on the VT, so the test harness could

A

Old Table

B

Reference Table

B

New Table

A

Tables Machine
Migrator Machine

Service Machines

Master Migr.Table

Migrate

...

Migr.Table

P# controlled
random R/W,

compare results

Linearization
Point Reporting

Figure 12: The test environment of MigratingTable (each
box with a dotted line represents one P# machine).

perform the operation on the RT at the same time. (More
precisely, after processing each backend operation, the
Tables machine enters a P# state that blocks all further
work until the MT reports whether the backend operation
was the linearization point and, if so, the logical opera-
tion has been completed on the RT. This way, the rest of
the system never observes the RT to be out of sync with
the VT.) For further implementation details of Migrat-
ingTable and its test harness, we refer the reader to the
source code repository [36].

5 Case Study: Azure Service Fabric

Azure Service Fabric (or Fabric for short) is a platform
and API for creating reliable services that execute on a
cluster of machines. The developer writes a service that
receives requests (e.g. HTTP requests from a client) and
mutates its state based on these requests. To make a user
service reliable, Fabric launches several replicas of the
service, where each replica runs as a separate process on
a different node in the cluster. One replica is selected
to be the primary which serves client requests; the re-
maining replicas are secondaries. The primary forwards
state-mutating operations to the secondaries so that all
replicas eventually have the same state. If the primary
fails, Fabric elects one of the secondaries to be the new
primary, and then launches a new secondary, which will
receive a copy of the state of the new primary in order
to “catch up” with the other secondaries. Fabric services
are complex asynchronous and distributed applications,
and are thus challenging to test.

Our primary goal was to create a P# model of Fabric
(where all the Fabric asynchrony is captured and con-
trolled by the P# runtime) to allow thorough testing of

9

258 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Fabric services. The model was written once to include
all behaviors of Fabric, including simulating failures and
recovery, so that it can be reused repeatedly to test many
Fabric services. This was the largest modeling exercise
among the case studies, but the cost was amortized across
testing multiple services. This is analogous to prior
work on device driver verification [2], where the cost of
developing a model of the Windows kernel was amor-
tized across testing multiple device drivers. Note that we
model the lowest Fabric API layer (Fabric.dll), which
is currently not documented for use externally; we target
internally-developed services that use this API.

Using P# was very helpful in debugging the model it-
self. To systematically test the model, we wrote a simple
service in P# that runs on our P# Fabric model. We tested
a scenario where the primary replica fails at some nonde-
terministic point. One bug that we found occurred when
the primary failed as a new secondary was about to re-
ceive a copy of the state; the secondary was then elected
to be the new primary and yet, because the secondary
stopped waiting for a copy of the state, it was then “pro-
moted” to be an active secondary (one that has caught
up with the other secondaries). This caused an assertion
failure in our model, because only a secondary can be
promoted to an active secondary, which allowed us to
detect and fix this incorrect behavior.

The main system that we tested using our P# Fabric
model is CScale [12], a big data stream processing sys-
tem. Supporting CScale required significant additions
to the model, making it much more feature-complete.
CScale chains multiple Fabric services, which commu-
nicate via remote procedure calls (RPCs). To close the
system, we modeled RPCs using PSharp.Send(...).
Thus, we converted a distributed system that uses both
Fabric and its own network communication protocol into
a closed, single-process system. A key challenge in our
work was to thoroughly test CScale despite the fact that
it uses various synchronous and asynchronous APIs be-
sides RPCs. This work is still in-progress. However, we
were able to find a NullReferenceException bug in
CScale by running it against our Fabric model. The bug
has been communicated to the developers of CScale, but
we are still awaiting a confirmation.

6 Quantifying the Cost of Using P#

We report our experience of applying P# on the three case
studies discussed in this paper. We aim to answer the
following two questions:

1. How much human effort was spent in modeling the
environment of a distributed system using P#?

2. How much computational time was spent in system-
atically testing a distributed system using P#?

System P# Test Harness

System-under-test #LoC #B #LoC #M #ST #AH

vNext Extent Manager 19,775 1 684 5 11 17
MigratingTable 2,267 11 2,275 3 5 10
Fabric User Service 31,959 1� 6,534 13 21 87

Table 1: Statistics from modeling the environment of the
three Microsoft Azure-based systems under test. The (�)
denotes “awaiting confirmation”.

6.1 Cost of environment modeling

Environment modeling is a core activity of using P#. It
is required for closing a system to make it amenable to
systematic testing. Table 1 presents program statistics
for the three case studies. The columns under “System”
refer to the real system-under-test, while the columns un-
der “P# Test Harness” refer to the test harness written in
P#. We report: lines of code for the system-under-test
(#LoC); number of bugs found in the system-under-test
(#B); lines of P# code for the test harness (#LoC); num-
ber of machines (#M); number of state transitions (#ST);
and number of action handlers (#AH).

Modeling the environment of the Extent Manager in
the Azure Storage vNext system required approximately
two person weeks of part-time developing. The P# test
harness for this system is the smallest (in lines of code)
from the three case studies. This was because this mod-
eling exercise aimed to reproduce the particular liveness
bug that was haunting the developers of vNext.

Developing both MigratingTable and its P# test har-
ness took approximately five person weeks. The harness
was developed in parallel with the actual system. This
differs from the other two case studies, where the model-
ing activity occurred independently and after the devel-
opment process.

Modeling Fabric required approximately five person
months, an effort undertaken by the authors of P#. In
contrast the other two systems discussed in this paper
were modeled and tested by their corresponding devel-
opers. Although modeling Fabric required a significant
amount of time, it is a one-time effort, which only needs
incremental refinement with each release.

6.2 Cost of systematic testing

Using P# we managed to uncover 8 serious bugs in our
case studies. As discussed earlier in the paper, these bugs
were hard to find with traditional testing techniques, but
P# managed to uncover and reproduce them in a small
setting. According to the developers, the P# traces were
useful, as it allowed them to understand the bugs and fix
them in a timely manner. After all the discovered bugs

10

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 259

P# Random Scheduler P# Priority-based Scheduler

CS Bug Identifier BF? Time to bug (s) #NDC BF? Time to bug (s) #NDC

1 ExtentNodeLivenessViolation � 10.56 9,000 � 10.77 9,000

2 QueryAtomicFilterShadowing � 157.22 165 � 350.46 108
2 QueryStreamedLock � 2,121.45 181 � 6.58 220
2 QueryStreamedBackUpNewStream � - - � 5.95 232
2 DeleteNoLeaveTombstonesEtag � - - � 4.69 272
2 DeletePrimaryKey � 2.72 168 � 2.37 171
2 EnsurePartitionSwitchedFromPopulated � 25.17 85 � 1.57 136
2 TombstoneOutputETag � 8.25 305 � 3.40 242

2 QueryStreamedFilterShadowing � 0.55 79 � 0.41 79
∗2 MigrateSkipPreferOld � - - � 1.13 115
∗2 MigrateSkipUseNewWithTombstones � - - � 1.16 120
∗2 InsertBehindMigrator � 0.32 47 � 0.31 47

Table 2: Results from running the P# random and priority-based systematic testing schedulers for 100,000 executions.
We report: whether the bug was found (BF?) (� means it was found, � means it was found only using a custom test
case, and � means it was not found); time in seconds to find the bug (Time to Bug); and number of nondeterministic
choices made in the first execution that found the bug (#NDC).

were fixed, we added flags to allow them to be individu-
ally re-introduced, for purposes of evaluation.

Table 2 presents the results from running the P# sys-
tematic testing engine on each case study with a re-
introduced bug. The CS column shows which case study
corresponds to each bug: “1” is for the Azure Storage
vNext; and “2” is for MigratingTable. We do not include
the Fabric case study, as we are awaiting confirmation of
the found bug (see §5). We performed all experiments
on a 2.50GHz Intel Core i5-4300U CPU with 8GB RAM
running Windows 10 Pro 64-bit. We configured the P#
systematic testing engine to perform 100,000 executions.
All reported times are in seconds.

We implemented two different schedulers that are re-
sponsible for choosing the next P# machine to execute in
each scheduling point: a random scheduler, which ran-
domly chooses a machine from a list of enabled4 ma-
chines; and a randomized priority-based [4] scheduler,
which always schedules the highest priority enabled ma-
chine (these priorities change at random points during
execution, based on a random distribution). We decided
to use these two schedulers, because random schedul-
ing has proven to be efficient for finding concurrency
bugs [43, 9]. The random seed for the schedulers was
generated using the current system time. The priority-
based scheduler was configured with a budget of 2 ran-
dom machine priority change switches per execution.

For the vNext case study, both schedulers were able to
reproduce the ExtentNodeLivenessViolation bug within
11 seconds. The reason that the number of nondetermin-
istic choices made in the buggy execution is much higher

4A P# machine is considered enabled when it has at least one event
in its queue waiting to be dequeued and handled.

than the rest of the bugs is that ExtentNodeLivenessVi-
olation is a liveness bug: as discussed in §2.5 we leave
the program to run for a long time before checking if the
liveness property holds.

For the MigratingTable case study, we evaluated the
P# test harness of §4 on eleven bugs, including eight
organic bugs that actually occurred in development and
three notional bugs (denoted by ∗), which are other code
changes that we deemed interesting ways of making the
system incorrect. The harness found seven of the organic
bugs, which are listed first in Table 2. The remaining
four bugs (marked �) were not caught with our default
test harness in the 100,000 executions. We believe this is
because the inputs and schedules that trigger them are too
rare in the used distribution. To confirm this, we wrote
a custom test case for each bug with a specific input that
triggers it and were able to quickly reproduce the bugs;
the table shows the results of these runs. Note that the
random scheduler only managed to trigger seven of the
MigratingTable bugs; we had to use the priority-based
scheduler to trigger the remaining four bugs.

The QueryStreamedBackUpNewStream bug in Mi-
gratingTable, which was found using P#, stands out be-
cause it reflects a type of oversight that can easily occur
as systems evolve. This bug is in the implementation
of a streaming read from the virtual table, which should
return a stream of all rows in the table sorted by key.
The essential implementation idea is to perform stream-
ing reads from both backend tables and merge the results.
According to the IChainTable specification, each row
read from a stream may reflect the state of the table at
any time between when the stream was started and the
row was read. The developers sketched a proof that the

11

260 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

merging process would preserve this property as long as
the migrator was only copying rows from the old table
to the new table. But when support was added for the
migrator to delete the rows from the old table after copy-
ing, it became possible for the backend streams to see
the deletion of a row from the old table but not its inser-
tion into the new table, even though the insertion happens
first, and the row would be missed.

The P# test discovered the above bug in a matter of
seconds. The MigratingTable developers spent just 10
minutes analyzing the trace to diagnose what was hap-
pening, although admittedly, this was after they added
MigratingTable-specific trace information and had sev-
eral days of experience analyzing traces. Out of the box,
P# traces include only machine- and event-level infor-
mation, but it is easy to add application-specific infor-
mation, and we did so in all of our case studies.

7 Related Work

Most related to our work are model checking [15] and
systematic concurrency testing [38, 11, 43], two power-
ful techniques that have been widely used in the past for
finding Heisenbugs in the actual implementation of dis-
tributed systems [25, 48, 47, 18, 21, 45, 19, 31].

State-of-the-art model checkers, such as MODIST [48]
and dBug [45], typically focus on testing entire, often
unmodified, distributed systems, an approach that easily
leads to state-space explosion. DEMETER [21], built on
top of MODIST, aims to reduce the state-space when ex-
ploring unmodified distributed systems. DEMETER ex-
plores individual components of a large system in iso-
lation, and then dynamically extracts interface behavior
between components to perform a global exploration. In
contrast, we try to offer a more pragmatic approach for
handling state-space explosion. We first partially model
a distributed system using P#. Then, we systematically
test the actual implementation of each system component
against its P# test harness. Our approach aims to enhance
unit and integration testing, techniques widely used in
production, where only individual or a small number of
components are tested at each time.

SAMC [31] offers a way of incorporating application-
specific information during systematic testing to reduce
the set of interleavings that the tool has to explore. Such
techniques based on partial-order reduction [14, 13] are
complementary to our approach: P# could use them to
reduce the exploration state-space. Likewise, other tools
can use language technology like P# to write models and
reduce the complexity of the system-under-test.

MACEMC [25] is a model checker for distributed sys-
tems written in the MACE [26] language. The focus of
MACEMC is to find liveness property violations using
an algorithm based on bounded random walk, combined

with heuristics. Because MACEMC can only test systems
written in MACE, it cannot be easily used in an industrial
setting. In contrast, P# can be applied on legacy code
written in C#, a mainstream language.

Formal methods have been successfully used in indus-
try to verify the correctness of distributed protocols. A
notable example is the use of TLA+ [29] by the Amazon
Web Services team [39]. TLA+ is an expressive formal
specification language that can be used to design and ver-
ify concurrent programs via model checking. A limita-
tion of TLA+, as well as other similar specification lan-
guages, is that they are applied on a model of the system
and not the actual system. Even if the model is verified,
the gap between the real-world implementation and the
verified model is still significant, so implementation bugs
are still a realistic concern.

More recent formal approaches include the Verdi [46]
and IronFleet [22] frameworks. In Verdi, developers can
write and verify distributed systems in Coq [3]. After
the system has been successfully verified, Verdi trans-
lates the Coq code to OCaml, which can be then com-
piled for execution. Verdi does not currently support de-
tecting liveness property violations, an important class of
bugs in distributed systems. In IronFleet, developers can
build a distributed system using the Dafny [34] language
and program verifier. Dafny verifies system correctness
using the Z3 [8] SMT solver, and finally compiles the
verified system to a .NET executable. In contrast, P#
performs bounded testing on a system already written in
.NET, which in our experience lowers the bar for adop-
tion by engineering teams.

8 Conclusion

We presented a new methodology for testing distributed
systems. Our approach involves using P#, an extension
of the C# language that provides advanced modeling,
specification and systematic testing capabilities. We re-
ported experience on applying P# on three distributed
storage systems inside Microsoft. Using P#, the devel-
opers of these systems found, reproduced, confirmed and
fixed numerous bugs.

9 Acknowledgments

We thank our shepherd Haryadi Gunawi for his valuable
guidance that significantly improved the paper, and the
anonymous reviewers for their constructive comments.
We also thank Ankush Desai from UC Berkeley, and
Rich Draves, David Goebel, David Nichols and SW
Worth from Microsoft, for their valuable feedback and
discussions at various stages of this work. We acknowl-
edge that this research was partially supported by a gift
from Intel Corporation.

12

USENIX Association 14th USENIX Conference on File and Storage Technologies (FAST ’16) 261

References
[1] AMAZON. Summary of the AWS service event in the US East

Region. http://aws.amazon.com/message/67457/, 2012.

[2] BALL, T., LEVIN, V., AND RAJAMANI, S. K. A decade of soft-
ware model checking with SLAM. Communications of the ACM
54, 7 (2011), 68–76.

[3] BARRAS, B., BOUTIN, S., CORNES, C., COURANT, J., FIL-
LIATRE, J.-C., GIMENEZ, E., HERBELIN, H., HUET, G.,
MUNOZ, C., MURTHY, C., ET AL. The Coq proof assis-
tant reference manual: Version 6.1. https://hal.inria.fr/

inria-00069968/, 1997.

[4] BURCKHARDT, S., KOTHARI, P., MUSUVATHI, M., AND NA-
GARAKATTE, S. A randomized scheduler with probabilistic
guarantees of finding bugs. In Proceedings of the 15th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (2010), ACM, pp. 167–178.

[5] CALDER, B., WANG, J., OGUS, A., NILAKANTAN, N.,
SKJOLSVOLD, A., MCKELVIE, S., XU, Y., SRIVASTAV, S.,
WU, J., SIMITCI, H., ET AL. Windows Azure Storage: a highly
available cloud storage service with strong consistency. In Pro-
ceedings of the 23rd ACM Symposium on Operating Systems
Principles (2011), ACM, pp. 143–157.

[6] CAVAGE, M. There’s just no getting around it: you’re building a
distributed system. ACM Queue 11, 4 (2013), 30–41.

[7] CHANDRA, T. D., GRIESEMER, R., AND REDSTONE, J. Paxos
made live: an engineering perspective. In Proceedings of the 26th
Annual ACM Symposium on Principles of Distributed Computing
(2007), ACM, pp. 398–407.

[8] DE MOURA, L., AND BJØRNER, N. Z3: An efficient SMT
solver. In Proceedings of the 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Sys-
tems (2008), Springer-Verlag, pp. 337–340.

[9] DELIGIANNIS, P., DONALDSON, A. F., KETEMA, J., LAL, A.,
AND THOMSON, P. Asynchronous programming, analysis and
testing with state machines. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Imple-
mentation (2015), ACM, pp. 154–164.

[10] DESAI, A., JACKSON, E., PHANISHAYEE, A., QADEER, S.,
AND SESHIA, S. A. Building reliable distributed systems with P.
Tech. Rep. UCB/EECS-2015-198, EECS Department, University
of California, Berkeley, Sep 2015.

[11] EMMI, M., QADEER, S., AND RAKAMARIĆ, Z. Delay-bounded
scheduling. In Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (2011),
ACM, pp. 411–422.

[12] FALEIRO, J., RAJAMANI, S., RAJAN, K., RAMALINGAM, G.,
AND VASWANI, K. CScale: A programming model for scalable
and reliable distributed applications. In Proceedings of the 17th
Monterey Conference on Large-Scale Complex IT Systems: De-
velopment, Operation and Management (2012), Springer-Verlag,
pp. 148–156.

[13] FLANAGAN, C., AND GODEFROID, P. Dynamic partial-order re-
duction for model checking software. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (2005), ACM, pp. 110–121.

[14] GODEFROID, P. Partial-order methods for the verification of
concurrent systems: an approach to the state-explosion problem,
vol. 1032 of Lecture Notes in Computer Science. Springer-Verlag,
1996.

[15] GODEFROID, P. Model checking for programming languages us-
ing VeriSoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (1997),
ACM, pp. 174–186.

[16] GRAY, J. Why do computers stop and what can be done about it?
In Proceedings of the 5th Symposium on Reliability in Distributed
Software and Database Systems (1986), IEEE, pp. 3–12.

[17] GREENBERG, A. SDN for the Cloud. Keynote in the 2015 ACM
Conference on Special Interest Group on Data Communication,
2015.

[18] GUERRAOUI, R., AND YABANDEH, M. Model checking a net-
worked system without the network. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Imple-
mentation (2011), USENIX, pp. 225–238.

[19] GUNAWI, H. S., DO, T., JOSHI, P., ALVARO, P., HELLER-
STEIN, J. M., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., SEN, K., AND BORTHAKUR, D. FATE and DESTINI:
A framework for cloud recovery testing. In Proceedings of the
8th USENIX Conference on Networked Systems Design and Im-
plementation (2011), USENIX, pp. 238–252.

[20] GUNAWI, H. S., HAO, M., LEESATAPORNWONGSA, T.,
PATANA-ANAKE, T., DO, T., ADITYATAMA, J., ELIAZAR,
K. J., LAKSONO, A., LUKMAN, J. F., MARTIN, V., AND SA-
TRIA, A. D. What bugs live in the cloud? a study of 3000+ issues
in cloud systems. In Proceedings of the 5th ACM Symposium on
Cloud Computing (2014), ACM.

[21] GUO, H., WU, M., ZHOU, L., HU, G., YANG, J., AND ZHANG,
L. Practical software model checking via dynamic interface re-
duction. In Proceedings of the 23rd ACM Symposium on Operat-
ing Systems Principles (2011), ACM, pp. 265–278.

[22] HAWBLITZEL, C., HOWELL, J., KAPRITSOS, M., LORCH,
J. R., PARNO, B., ROBERTS, M. L., SETTY, S., AND ZILL, B.
IronFleet: Proving practical distributed systems correct. In Pro-
ceedings of the 25th Symposium on Operating Systems Principles
(2015), ACM.

[23] HENRY, A. Cloud storage FUD: Failure and uncertainty and
durability. Keynote in the 7th USENIX Conference on File and
Storage Technologies, 2009.

[24] HOGG, J. Azure storage table design guide: Design-
ing scalable and performant tables. https://azure.

microsoft.com/en-us/documentation/articles/

storage-table-design-guide/, 2015.

[25] KILLIAN, C., ANDERSON, J. W., JHALA, R., AND VAHDAT,
A. Life, death, and the critical transition: Finding liveness bugs
in systems code. In Proceedings of the 4th USENIX Confer-
ence on Networked Systems Design and Implementation (2007),
USENIX, pp. 18–18.

[26] KILLIAN, C. E., ANDERSON, J. W., BRAUD, R., JHALA, R.,
AND VAHDAT, A. M. Mace: language support for building dis-
tributed systems. In Proceedings of the 28th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation
(2007), ACM, pp. 179–188.

[27] LAGUNA, I., AHN, D. H., DE SUPINSKI, B. R., GAMBLIN, T.,
LEE, G. L., SCHULZ, M., BAGCHI, S., KULKARNI, M., ZHOU,
B., CHEN, Z., AND QIN, F. Debugging high-performance com-
puting applications at massive scales. Communications of the
ACM 58, 9 (2015), 72–81.

[28] LAMPORT, L. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering 3, 2 (1977), 125–
143.

[29] LAMPORT, L. The temporal logic of actions. ACM Transactions
on Programming Languages and Systems 16, 3 (1994), 872–923.

[30] LAMPORT, L. The part-time parliament. ACM Transactions on
Computer Systems 16, 2 (1998), 133–169.

13

262 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

[31] LEESATAPORNWONGSA, T., HAO, M., JOSHI, P., LUKMAN,
J. F., AND GUNAWI, H. S. SAMC: Semantic-aware model
checking for fast discovery of deep bugs in cloud systems. In
Proceedings of the 11th USENIX Conference on Operating Sys-
tems Design and Implementation (2014), USENIX, pp. 399–414.

[32] LEESATAPORNWONGSA, T., LUKMAN, J. F., LU, S., AND GU-
NAWI, H. S. TaxDC: A taxonomy of non-deterministic concur-
rency bugs in datacenter distributed systems. In Proceedings of
the 21st International Conference on Architectural Support for
Programming Languages and Operating Systems (2016), ACM.

[33] LEIJEN, D., SCHULTE, W., AND BURCKHARDT, S. The de-
sign of a task parallel library. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications (2009), ACM, pp. 227–242.

[34] LEINO, K. R. M. Dafny: An automatic program verifier for func-
tional correctness. In Proceedings of the 16th International Con-
ference on Logic for Programming, Artificial Intelligence, and
Reasoning (2010), Springer-Verlag, pp. 348–370.

[35] MADDOX, P. Testing a distributed system. ACM Queue 13, 7
(2015), 10–15.

[36] MCCUTCHEN, M. MigratingTable source repository. https:

//github.com/mattmccutchen/MigratingTable, 2015.

[37] MUSUVATHI, M., AND QADEER, S. Fair stateless model check-
ing. In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation (2008),
ACM, pp. 362–371.

[38] MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G.,
NAINAR, P. A., AND NEAMTIU, I. Finding and reproducing
Heisenbugs in concurrent programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Imple-
mentation (2008), USENIX, pp. 267–280.

[39] NEWCOMBE, C., RATH, T., ZHANG, F., MUNTEANU, B.,
BROOKER, M., AND DEARDEUFF, M. How amazon web ser-
vices uses formal methods. Communications of the ACM 58, 4
(2015), 66–73.

[40] ONGARO, D., AND OUSTERHOUT, J. In search of an
understandable consensus algorithm. In Proceedings of the

2014 USENIX Annual Technical Conference (2014), USENIX,
pp. 305–319.

[41] PNUELI, A. The temporal logic of programs. In Proceedings of
the Foundations of Computer Science (1977), pp. 46–57.

[42] TASSEY, G. The economic impacts of inadequate infrastructure
for software testing. National Institute of Standards and Technol-
ogy, Planning Report 02-3 (2002).

[43] THOMSON, P., DONALDSON, A. F., AND BETTS, A. Concur-
rency testing using schedule bounding: An empirical study. In
Proceedings of the 19th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (2014), ACM, pp. 15–
28.

[44] TREYNOR, B. GoogleBlog – Today’s outage for several Google
services. http://googleblog.blogspot.com/2014/01/

todays-outage-for-several-google.html, 2014.

[45] ŠIMŠA, J., BRYANT, R., AND GIBSON, G. dBug: Systematic
testing of unmodified distributed and multi-threaded systems. In
Proceedings of the 18th International SPIN Conference on Model
Checking Software (2011), Springer-Verlag, pp. 188–193.

[46] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TATLOCK, Z.,
WANG, X., ERNST, M. D., AND ANDERSON, T. Verdi: A
framework for implementing and formally verifying distributed
systems. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation (2015),
ACM, pp. 357–368.

[47] YABANDEH, M., KNEZEVIC, N., KOSTIC, D., AND KUNCAK,
V. CrystalBall: Predicting and preventing inconsistencies in de-
ployed distributed systems. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation
(2009), USENIX, pp. 229–244.

[48] YANG, J., CHEN, T., WU, M., XU, Z., LIU, X., LIN, H.,
YANG, M., LONG, F., ZHANG, L., AND ZHOU, L. MODIST:
Transparent model checking of unmodified distributed systems.
In Proceedings of the 6th USENIX Symposium on Networked Sys-
tems Design and Implementation (2009), USENIX, pp. 213–228.

14

