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Abstract. We consider the problem of choosing the best matching of
people to positions based on preferences expressed by the people, for which
many different optimality criteria have been proposed. A matching is pop-
ular if no other matching beats it in a majority vote of the people. The
popularity criterion has a manipulation-resistance property, but unfortu-
nately, some sets of preferences admit no popular matching. In this paper,
we introduce the least-unpopularity-factor and least-unpopularity-margin
criteria, two generalizations of popularity that preserve the manipulation-
resistance property but give an optimal matching for every set of prefer-
ences. Under each of these generalizations, we show that the “badness” of
a given matching can be calculated efficiently but it is NP-hard to find an
optimal matching.

Keywords: matching, one-sided preferences, algorithms, NP-hardness,
popular matching, voting.

1 Introduction

One of the most common administrative tasks that many organizations perform
is assigning people to positions of some kind based on preferences expressed by
the people, the positions, or both. For example, the University of Maryland De-
partment of Computer Science assigns teaching assistants to classes according to
the teaching assistants’ preferences. The National Resident Matching Program
(see [10]) assigns residents to hospitals based on the preferences of both resi-
dents and hospitals. Gale and Shapley [4] even suggested that students could be
assigned to colleges by a central organization that observes the preferences of
both sides.

All of these organizations face the problem of choosing a matching of people to
positions that gives fair consideration to everyone’s preferences. In this paper, we
consider the problem in which the people express preferences for the positions,
but not vice versa: the preferences are one-sided. An instance of this problem
consists of a set of people, a set of positions, and a preference list for each person
giving his preference ordering of the subset of the positions that he would be
willing to occupy; these orderings may contain ties. The problem is to find the
matching that is best overall in light of the preferences. In a valid matching, each
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person p is either matched to a position on her preference list or left without
a position, which we represent by matching her to a last resort position LR(p)
available only to her as her last choice.

What makes this problem interesting is that it is not clear what it means
for a matching to be “best”: since it is almost never possible to give everyone
her first choice simultaneously, any matching will inevitably please some people
at the expense of others. If we can change a matching to make someone better
off without making anyone else worse off (a Pareto improvement), of course we
should do so, but there are still many Pareto efficient matchings that admit
no such improvement. To decide among these, we need an optimality criterion
that, for each instance, designates one or more matchings as optimal. Then, to
apply the criterion in practice, we need an efficient algorithm to compute an
optimal matching for a given instance. Ideally, our criterion should be “fair” in
some sense and should resist attempts by the people to obtain better positions
by lying about their preferences.

Many different optimality criteria have been proposed, studied, and used.
Some are based on minimizing functions of the rank numbers that the people give
to the positions they receive, but such criteria tend to be easy to manipulate. For
example, MIT once assigned incoming students to residence halls by minimizing
the sum of the cubes of the rank numbers, and a student could improve her
chances of being assigned to her true first-choice residence hall by inserting
other highly desirable residence halls near the top of her preference list [9].

One criterion that does not use rank numbers and is therefore less susceptible
to this kind of manipulation is popularity. A matching M is popular if no other
matching N beats it by majority vote, where each person votes for the matching
that gives him the position he likes better or abstains if he likes the two positions
equally well. For example, matching M in Figure 1 is not popular because N
beats it by majority vote (B and C outvote A in favor of N), while N is popular.
(We display an instance as a table that gives the rank number (− if unwilling)
for each person (row) and non-last-resort position (column) and a matching by
parenthesizing the rank numbers of the matched pairs.)

Abraham et al. [2] gave an efficient algorithm to compute a popular match-
ing for a given instance when one exists. Unfortunately, some instances have
no popular matching because of nontransitivity in the voting. For example, no
matching for I2 is popular because we can obtain a matching that beats it by a
vote of 2 to 1 by promoting the occupant of y to x and the occupant of x to w
and demoting the occupant of w to y.

M =

�
�

w x y

A (1) − 2
B 1 (2) −
C − 1 (2)

�
�, N =

�
�

w x y

A 1 − (2)
B (1) 2 −
C − (1) 2

�
�, I2 =

�
�

w x y

A 1 2 3
B 1 2 3
C 1 2 3

�
�

Fig. 1. Example instances and matchings
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In general, when no matching meets the standard of popularity, we would
still like to choose a merely “poor” matching over a “terrible” one. To this
end, we will propose two numerical measures of a matching’s “badness”: its
unpopularity factor and its unpopularity margin. The least-unpopularity-factor
and least-unpopularity-margin optimality criteria, respectively, minimize these
two measures. We will show that a given matching’s unpopularity factor and
margin can be calculated efficiently using algorithms based on shortest paths and
minimum-cost flow, respectively. However, surprisingly, it is possible to encode
the structure of a 3-satisfiability instance in the people’s preferences so as to
prove that finding an optimal matching under either criterion is NP-hard; we
will present this rather unusual reduction in detail.

The inability to find optimal matchings severely limits the immediate practical
applicability of these two criteria. Nevertheless, by ruling them out, this paper
makes a step toward the goal of finding a criterion that has all the desired
properties. Such a criterion would make it possible for organizations to solve
their matching problems easily, fairly, and objectively by computer.

2 Related Work

The notion of popularity was first proposed by Gärdenfors [5] in the context
of two-sided preferences. More recently, Abraham et al. [2] discussed it for one-
sided preferences and gave the first polynomial-time algorithm to find popular
matchings. On an instance with n people and a total of m preference-list entries,
the algorithm runs in O(m

√
n) if there are ties and O(n + m) if not. Abraham

and Kavitha suggested at the end of [3] that, when no popular matching exists, a
matching could be chosen based on the graph induced by the “beats by majority
vote” relation among matchings; in this paper, we take a different approach by
generalizing the “beats” relation itself.

A matching M is rank-maximal if it has the lexicographically maximum tuple
(n1, n2, . . .), where ni is the number of people assigned to positions they respec-
tively ranked ith. Irving et al. [7] found an algorithm to compute a rank-maximal
matching in O(min(n + C, C

√
n)m) time, where C is the worst numerical rank

to which any person is assigned in the result. Unfortunately, just as MIT’s cri-
terion induced people to artificially increase the rank numbers of the positions
they desire, the rank-maximality criterion induces people to decrease the rank
numbers (by omitting positions they are unlikely to receive) because it gives
lower rank numbers priority over higher ones. The least-unpopularity criteria,
which do not consider rank numbers at all, may be fairer.

If each person specifies utilities for the positions instead of ranking them, the
most natural rule, known as weighted matching [8], is to maximize the total
utility of all pairs. The most commonly used criterion for instances with two-
sided preferences (we call the two sides applicants and recruiters) is stability. A
matching is stable unless some currently unpaired applicant and recruiter both
prefer each other to their current partners. Gale and Shapley [4] proved that
every instance has a stable matching and gave an algorithm to find one.
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3 The Unpopularity Factor

Definition 3.1. If M and N are two matchings for the same instance, N dom-
inates M by a factor of u/v, where u is the number of people who strictly prefer
N to M and v is the number of people who strictly prefer M to N . The unpop-
ularity factor of a matching M is the maximum factor by which it is dominated
by any other matching (ignoring matchings that give u = v = 0).

Note that a matching N dominates a matching M by a factor of ∞ if and only
if N is a Pareto improvement over M ; thus M has a finite unpopularity factor if
and only if it is Pareto efficient. Furthermore, a matching is popular as defined
by Abraham et al. [2] if and only if its unpopularity factor is at most 1.

The least unpopularity factor of an instance is the minimum unpopularity
factor of all of its matchings, and the matching(s) that achieve this minimum are
considered optimal. Thus, different instances have different numbers of optimal
matchings, but every instance has at least one.

Matching M from the Introduction has unpopularity factor 2 because N dom-
inates it by a factor of 2. However, N has unpopularity factor 1: the only person
who might favor a different matching is A, and to promote A we must demote B,
achieving a dominance factor of 1. In I2, the six matchings that fill all three po-
sitions all have unpopularity factor 2 because the people in x and y can improve
at the expense of the person in w; these six matchings are optimal.

To determine the unpopularity factor of a matching directly from the defini-
tion, we would have to consider all possible alternative matchings and calculate
the factor by which each dominates M , which would take exponential time. For-
tunately, there is an efficient way to calculate the unpopularity factor using the
concept of pressures, which we will develop next.

3.1 Differences Between Matchings: Reassignments, Paths and
Cycles

We can think of an instance as a bipartite graph whose vertex sets are the people
and the positions and whose edges are the preference-list entries. A matching
of the instance is then just a matching of the graph that uses all the people
(because every person has a position, though it might just be her last resort).

In what ways can two matchings M and N differ? Their symmetric difference,
which we will denote M ⊕N , consists of vertex-disjoint paths and/or cycles that
are alternating in the sense that their edges come alternately from M and N .
Furthermore, the alternating paths stop at positions, because if a path stopped at
a person, she would lack a position in one matching, which is not allowed. We can
think of an alternating path as a sequence of reassignments: one person moves
to a different position, ejecting its original occupant; the occupant takes another
position, ejecting its occupant; and so forth until someone takes a previously
unoccupied position. Each reassignment may constitute a promotion or demotion
of the reassigned person according to his preferences. An alternating cycle is
similar.
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Conversely, we say that a path or cycle X is applicable to a matching M if
M ⊕ X is a valid matching. If so, applying X to M gives M ⊕ X ; X represents
the change from M to M ⊕ X .

With this background, we can define pressures.

3.2 Pressures

Definition 3.2. Let M be a Pareto efficient matching. The pressure of a filled
position p in M is the largest k for which there exists an alternating path ap-
plicable to M that promotes k people without demoting anyone and then ends
with the demotion of the occupant of p to her last resort. Note that the demotion
by itself constitutes such a path for k = 0. (The term “pressure” comes from the
idea of k people stacked up behind p, wishing that its occupant will leave so they
can all become better off.)

Theorem 3.3. The unpopularity factor of a Pareto efficient matching M is the
greatest pressure of any of its filled positions.

Proof. Recall that the unpopularity factor of M is the greatest pressure by which
any other matching dominates M . To establish that the two maxima are equal,
we’ll show that each is at least as great as the other, i.e., (a) if M has a position
p of pressure k, then there exists a matching N that dominates M by a factor
of at least k and (b) if a matching N dominates M by a factor of f , then M has
a position of pressure at least �f�.

(a): Simply let N be the result of applying to M the path that determines
the pressure of p. The path promotes k people and demotes one person, so N
dominates M by a factor of k.

(b): Let u and v be the total number of people better and worse off in N
than in M , so that f = u/v. First modify N so that everyone who is worse off
in N than in M is demoted all the way to his last resort in N ; this does not
change u or v. Decompose M ⊕ N into a collection of paths and cycles X1, . . . ,
Xc, discarding those that neither promote nor demote anyone. Each Xi must
demote at least one person so that it is not a Pareto improvement over M . That
person is demoted to his last resort, and since there is no one else to leave the
last resort, the demotion must be the last reassignment in Xi; thus Xi is a path
(not a cycle). A path has only one last reassignment, so each Xi demotes exactly
one person to his last resort, and c = v.

For each i, let ui be the number of people promoted by Xi; of course,
∑

i ui =
u. Choose an i such that ui ≥ �u/v� = �f�; by the Pigeonhole Principle, one
must exist. Let p be the position whose occupant is demoted by Xi. Observe
that Xi has exactly the form considered in Definition 3.2 for the pressure of p,
and it makes at least �f� people better off; thus the pressure of p is at least �f�.

Corollary 3.4. The unpopularity factor of a matching, if finite, is an integer.



598 R.M. McCutchen

3.3 Computing the Unpopularity Factor

We can reduce computation of the pressures of a matching to a shortest path
problem. Let n′ and n be the numbers of people and positions, and let m be the
total number of entries in the preference lists.

Algorithm 3.5. In O(m
√

n) time, determines whether a matching M is Pareto
efficient and, if so, finds the pressure of each filled position in M .

Method. Construct a graph G whose vertices are the positions of M . A pair of
vertices (p1, p2) is connected in G by an edge of length −1 if p1 is filled by a
person who strictly prefers p2, an edge of length 0 if p1 is filled by a person
indifferent to p2, or no edge otherwise. Run Goldberg’s shortest-path algorithm
[6] on G, using all positions as sources so that the algorithm finds the shortest
path ending at each position. If Goldberg’s algorithm finds a negative cycle in
G or a negative-length path ending at an unfilled position, conclude that M is
Pareto inefficient. Otherwise, the pressure of each position is the negative of the
length of the shortest path ending at it.

A path or cycle X in G represents a sequence of reassignments that demotes
no one and is applicable to M after the ending position (in the case of a path)
is vacated; furthermore, the length of X in G is the negative of the number of
people it promotes. In light of this, Pareto-improving cycles and paths applicable
to M correspond to negative cycles and negative-length paths ending at unfilled
positions, respectively, in G. Thus, the algorithm correctly determines whether
M is Pareto efficient. If it is, then paths in G ending at a position p represent
paths applicable to M of the form considered in Definition 3.2, with the negative
of a path’s length corresponding to k in that definition. Thus, the negative of
the shortest length of a path ending at p gives the pressure of p, as desired.

Each preference-list entry of the instance accounts for at most one edge of G,
so G has at most m edges. The running time is dominated by that of Goldberg’s
algorithm, which is O(m

√
n) since edge lengths are at least −1.

To find the unpopularity factor of a matching, we use this algorithm to find
the pressures and then simply take the highest pressure. This algorithm can be
seen as a generalization of the algorithm given by Abraham et al. [1] to determine
in O(m) time only whether M is Pareto efficient; both algorithms are based on
the same graph G.

4 The Unpopularity Margin

The unpopularity margin of a matching is defined the same way as the unpopu-
larity factor, except we subtract the numbers of votes instead of dividing them:

Definition 4.1. If M and N are two matchings for the same instance, N dom-
inates M by a margin of u − v, where u is the number of people who strictly
prefer N to M and v is the number of people who strictly prefer M to N . The
unpopularity margin of a matching M is the maximum margin by which it is
dominated by any other matching.
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The unpopularity margin of a matching M is an integer; it is 0 if M is popular
(because M dominates itself by a margin of 0) or otherwise positive. We can
reduce calculating the unpopularity margin to a min-cost max-flow problem.
Since we use integer edge capacities, we assume that edge flows are also integers.

Algorithm 4.2. Finds the unpopularity margin u of a matching M in
O((u + 1)m

√
n′ + n) time.

Method. Construct a flow graph G having as vertices a source, a sink, and the
people and positions of M . Add an edge of unit capacity and zero cost from the
source to each person and from each position to the sink. For each preference-list
entry submitted by a person A for a position p, add a unit-capacity edge from
A to p whose cost is −1, 0 or 1 as A likes p better than, the same as, or worse
than her position in M .

A max-flow of G must put one unit of flow through each person, and those
units must reach the sink via different positions, so the max-flows of G cor-
respond exactly to the possible matchings of the instance. Furthermore, the
cost of a max-flow is the negative of the margin by which the corresponding
matching dominates M . Thus, we find the min-cost max-flow by starting from
the max-flow representing M itself and augmenting negative cycles found using
Goldberg’s shortest-path algorithm [6]. The negative of the cost of this flow gives
the unpopularity margin of M .

To find each negative cycle, we run Goldberg’s algorithm on a graph with
n′ + n + 2 vertices and m edges, taking O(m

√
n′ + n) time since edge lengths

are at least −1. Each cycle decreases the cost by at least 1 until we reach cost
−u, so we find at most u cycles and then perform one more failed search for a
cycle. The running time bound follows.

5 NP-Hardness of Finding Least-Unpopularity Matchings

We now use a reduction from 3-satisfiability (3SAT) to prove that it is NP-hard
to find the least unpopularity factor or margin of a given set of preferences; it
happens that the same reduction works for both problems. Abraham et al. [2]
analyze preference sets with no ties separately from the general case of ties. We
have had no reason to make this distinction so far, but the reduction will always
generate preference lists with no ties in order to prove that even the no-ties
versions of the problems are NP-hard.

The reduction converts an instance S of 3SAT to a polynomial-size preference
set P and an ideal unpopularity factor. We will show that any tuple of truth
values that satisfies S can be converted to a matching of P whose unpopularity
factor does not exceed the ideal value, and vice versa; thus, the least unpopularity
factor of P is at most the ideal value if and only if S is satisfiable. Therefore,
computing the least unpopularity factor of P is NP-hard because an algorithm
to do that could be used to determine whether S is satisfiable. This paragraph
applies equally to unpopularity margins, and henceforth “unpopularity” will
refer to either the factor or the margin.
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5.1 Overview of the Reduction Design

The reduction, like most, builds P from gadgets that represent pieces of S. Each
gadget will contain some internal people and positions and some linking people;
there will also be linking positions that do not belong to any gadget. An internal
person is willing to occupy only internal positions of her own gadget, but a
linking person is also open to exactly one linking position, which is always her
first choice. Any reassignment of the occupant of a linking position is a demotion,
which (from the perspective of voting) could just as well be to his last resort
as into a gadget; thus, the dominance that can be achieved by replacing him
depends only on the identity and state of the gadget providing the replacement,
not on the states of any other gadgets. In other words, gadgets are isolated from
one another unpopularity-wise; their only interactions are in which gadget gets to
fill each linking position. Thus, we can analyze each gadget’s contribution to the
unpopularity of the matching separately as a function of which linking positions
the gadget gets.

Motivated by this idea, we introduce three types of gadget, each of which is
designed to enforce a certain constraint on which linking positions it must get
by producing a low unpopularity if the constraint is satisfied or a higher one if it
is not. To represent S, we start with a set of key linking positions representing
its variables; the choice of which gadget gets each of these positions represents a
tuple of truth values for the variables. We then add gadgets so that satisfaction of
all of the gadget constraints is equivalent to satisfaction of S, and we let the ideal
unpopularity of P be the low unpopularity that would result if every gadget’s
constraint were satisfied. Note that the unpopularity factor of the matching is
the highest pressure produced by any gadget, while the unpopularity margins of
separate gadgets roughly add.

5.2 The Gadgets

A box consists of four internal positions, three internal people (i1, i2, and i3), and
three linking people (w, n1, and n2). Figure 2(a) shows its structure, including
the linking positions. w is known as the wide person, and n1 and n2 are the
narrow people. A box is satisfied, and produces a pressure of 2 and a margin
of 1, if either the wide person or both narrow people get their linking positions;
however, if both the wide person and at least one narrow person are denied their
linking positions, a pressure of 3 and a margin of 2 result.

A peg (Figure 2(b)) consists of one internal position available to three linking
people, all of whom prefer the same linking position. Its purpose is very simple:
to always produce a pressure of 2 on l and provide a way to replace its occupant
at margin 1.

A pool (Figure 2(c)) consists of two internal positions and three linking people.
If k of the people are denied their linking positions, the pool has one linking
position with a pressure of k and can replace its occupant at a margin of max(k−
1, 0). We want to use the pool to distinguish between two and three people being
denied linking positions. To this end, we attach a peg to each linking position;
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then, all positions have pressure 2 and replacement margin 1, except when all
three positions are taken by people from other gadgets, one of them develops a
pressure of 3 and a replacement margin of 2.

�
�������

x y z u lw ln1 ln2

w 2 3 5 4 1 − −
i1 1 2 3 4 − − −
i2 1 2 3 4 − − −
i3 1 2 3 4 − − −
n1 − − − 2 − 1 −
n2 − − − 2 − − 1

�
�������

�
�

x l

f1 2 1
f2 2 1
f3 2 1

�
�

�
�

x y lf1 lf2 lf3

f1 2 3 1 − −
f2 2 3 − 1 −
f3 2 3 − − 1

�
�

(a) (b) (c)

Fig. 2. The three gadgets: (a) box, (b) peg, and (c) pool

5.3 Constructing the Preference Set

A box is a “two-for-one” device: if another gadget takes its wide linking position,
it demands both narrow linking positions. For any k, we can construct a k-for-
one device from k − 1 boxes by identifying the wide position of each box after
the first with a narrow position of the previous box. If we identify the ultimate
wide positions of two such devices, we can get a u-for-v device for any desired u
and v.

For each variable xi of the 3SAT instance S, we generate a many-for-many
device whose two sets of narrow positions represent the references to xi and the
references to ¬xi in the clauses of S, respectively. The device for a variable x
with four ordinary references and four negated ones could be drawn like this:

x
x

x ~x
~x

~x

~xx

(Boxes represent boxes, circles represent linking positions, and lines represent
linking people. Internal people and positions are not shown.) In a matching that
obeys all the gadget constraints, we may assign all the linking people either to
the right, filling the ¬x positions and leaving the x positions open, or to the left,
filling the x positions and leaving the ¬x positions open. These two possibilities
correspond to making x true or false, respectively. Either way, a linking position
is left open if and only if the reference it represents evaluates to true.

Now, we add a pool for each clause of S and identify its three linking positions
with linking positions of the variable devices according to the clause’s three
references. The pool demands that at least one of its linking people receive a
linking position. This is possible if and only if the clause is satisfied, so we can
see that a matching that obeys all the constraints represents a solution to S.
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5.4 Correctness of the Reduction

We will now give the details of the argument that S is satisfiable if and only
if P has a matching of the ideal unpopularity factor (margin) and, in doing so,
specify the ideal unpopularities.

Suppose the tuple of truth values (t1, . . . , tv) satisfies S; we construct a match-
ing M as follows. We match the device for each variable xi in a manner that
depends on ti. If ti is true, we match each box on the xi side according to
the first table below, filling its wide linking position, and each box on the ¬xi

side according to the second, filling its two narrow linking positions. In the first
table, we let n1 be a/the person whose linking position is shared with a pool
(rather than a box) so that the pressure of 2 on ln1 from the box is subsumed
by that from the attached peg; we then assign n2 to his last resort. Each table’s
superscripts give the pressures generated by the box shown; other gadgets may
account for higher pressures on some linking positions.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x2 y1 z0 u1 l0w l2n1 l1n2

w 2 3 5 4 (1) − −
i1 (1) 2 3 4 − − −
i2 1 (2) 3 4 − − −
i3 1 2 (3) 4 − − −
n1 − − − (2) − 1 −
n2 − − − 2 − − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x2 y1 z0 u0 l1w l0n1 l0n2

w 2 3 5 (4) 1 − −
i1 (1) 2 3 4 − − −
i2 1 (2) 3 4 − − −
i3 1 2 (3) 4 − − −
n1 − − − 2 − (1) −
n2 − − − 2 − − (1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Each of the device’s linking positions is filled exactly once except for those rep-
resenting references to xi. If ti is instead false, we use the same construction but
with the two sides of the device switched. Either way, exactly those linking posi-
tions that represent references evaluating to true are left open, and no pressure
exceeds 2.

Now we assign each pool linking person to her linking position if it is available
or otherwise to the best available position in her pool. Since the ti satisfy S, at
least one linking person from each pool will get a linking position, so each pool
only needs to accommodate at most two people. A pool can hold two people
as in the table below (the pressure superscripts consider the attached pegs as
well as the pool itself), and additional people can be moved to linking positions
without increasing the pressures.

⎛

⎝

x1 y0 l2f1 l2f2 l2f3

f1 (2) 3 1 − −
f2 2 (3) − 1 −
f3 2 3 − − (1)

⎞

⎠

Nowhere did M incur a pressure exceeding 2, so it has unpopularity factor
2, which we designate as ideal. To bound its unpopularity margin, we use the
following lemma, whose proof we omit due to space constraints:

Lemma 5.1. The unpopularity margin of a Pareto efficient matching M does
not exceed the number of filled positions in M that have pressure 2 or greater.
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M has exactly 6c − 2v positions of pressure 2, namely the 3c positions bearing
pegs and the internal position x of each of the 3c − 2v boxes (one per variable
reference minus 2v at the ends of the variable devices), so M has unpopularity
margin at most 6c − 2v, which we designate as ideal.

For the other direction of the proof, suppose that S is unsatisfiable and let
M be an arbitrary Pareto efficient matching of P ; we will show that M achieves
neither the ideal unpopularity factor nor the ideal unpopularity margin. It should
be clear that M cannot satisfy all the gadget constraints, but we must show that
non-ideal unpopularities result.

A peg may or may not get its linking position in M , but either way, x must
be filled for Pareto efficiency, and at least one person is left at her last resort.
Starting from M , we “cycle” each peg by promoting a last-resort person to x,
promoting the occupant of x to the linking position, and demoting the occupant
of the linking position to his last resort. In each box, the three people i1, i2, and
i3 are all eager to fill the three positions x, y, z, so M must fill those positions
for Pareto efficiency. We cycle the box by promoting z’s occupant (who could
be w rather than an ij) to y and y’s occupant to x, demoting the occupant of
x. Let N be the resulting matching. We have performed two demotions and one
promotion for each of the 3c pegs and 3c − 2v boxes, so N dominates M by the
ideal margin of 6c − 2v.

Now we modify N to exploit the gadget dissatisfaction in M . Suppose M
dissatisfies a box, i.e., both the wide person w and at least one narrow person
(say n1) are denied linking positions. The four people w, i1, i2, and i3 are eager
to fill the four positions x, y, z, and u, so M must fill those positions. Instead of
cycling this box, we do the following. If either w or an ij is at her last resort, we
promote her to z and z’s occupant to y. Otherwise, n1 must be at his last resort;
we promote him to u and u’s occupant (who must be w or an ij) to y. Either
way, we then promote y’s occupant to x and demote the occupant of x. We now
have 3 promotions in the box instead of 2, so N dominates M by a margin of
6c − 2v + 1. Furthermore, the chain of promotions exerts a pressure of 3 on x.

On the other hand, if M dissatisfies a pool (by denying all three of its people
their linking positions), then one of the people must be in x, one must be in y,
and the third (call him p) must be at his last resort. Let lfi be the linking position
of the occupant of x. Instead of cycling the peg attached to lfi, we promote p
to y, y’s occupant to x, and x’s occupant to lfi, demoting the occupant of lfi.
This strategy similarly raises the dominance margin to 6c − 2v + 1 and reveals
a pressure of 3 on lfi.

In either case, the pressure of 3 shows that M fails to achieve the ideal unpop-
ularity factor of 2 and N ’s dominance margin of 6c − 2v + 1 shows that M fails
to achieve the ideal unpopularity margin of 6c − 2v, so the proof is complete.

By means of the reduction, we have proved the following result:

Theorem 5.2. It is NP-hard to calculate the least unpopularity factor or mar-
gin of a given preference set. Thus, it is also NP-hard to compute an optimal
matching.
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How well the least unpopularity factor and margin of an instance can be ap-
proximated is an open problem. The above proof shows that it is NP-hard to
approximate the least unpopularity factor within a factor better than 3/2. The
author examined three heuristic algorithms (see the supplementary material)
that often find good matchings but could not prove an approximation bound for
any of them; a search for a simple construction to increase the additive gap in
the least unpopularity factor was also unsuccessful. Of course, a more impor-
tant goal for future work is to find a good manipulation-resistant criterion under
which optimal matchings always exist and can be found efficiently.
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