
Assigning Papers to Reviewers

Samir Khuller∗

Dept. of Computer Science
University of Maryland, College Park MD 20742.

Richard Matthew McCutchen†

1 Introduction

Assignment problems arise in a variety of settings. For funding agencies such as NSF program
directors that co-ordinate panels, assigning proposals to reviewers is a major challenge. It is
important that each proposal receive sufficient review by qualified experts, and at the same time we
would like to roughly balance the workload across reviewers and to honor the reviewers’ preferences
for which proposals they would like to read. The same issue arises for a program committee chair,
who may have to assign literally hundreds of papers to a program committee consisting of thirty
to forty program committee members.

From now on we will focus on the problem of assigning papers to reviewers. We assume that
each reviewer is given access to the list of papers to be reviewed, and gives each paper both a
“preference” score indicating his/her level of interest in reviewing the paper and an “expertise”
score indicating how qualified he/she is to evaluate the paper. (Some organizations may use a
single preference score and assume that it also indicates expertise. We believe that making the
distinction may better model the real-world objective.) A reviewer may also declare a conflict of
interest with a particular paper, meaning that he/she is forbidden to review the paper.

We do not consider stable marriage type preference lists, because a strict ranking of papers
would be rather tedious to produce. In this scheme, the papers are essentially grouped into a few
categories.

Let N be the number of papers and P be the number of reviewers. Suppose that each paper
needs q reviews, so a total of qN reviews need to be generated. Ideally, from the perspective of the
papers, we would like to assign each paper the q most qualified reviewers for the paper. Of course,
this could lead to a load imbalanced solution where the load on some program committee members
is very high, and the load on others is low. On the other hand, we could insist on a perfectly load
balanced solution in which the number of papers assigned to each program committee member
does not exceed L = dqN/P e. However, this may lead to a solution which is not optimal from the
perspective of the papers.

One of our goals is to study precisely this tradeoff, and allow each reviewer to be assigned up
to L + C papers, where C is the load tolerance. We consider the question: is it possible to obtain
a high quality assignment with a fairly low value of C? One can also ask whether, in such an
assignment, the reviewers receive the papers that they would have most liked to review.

Stinkers are papers that pretty much no-one wanted to review. We would like to spread the
load of the stinkers as evenly as possible.
∗Research currently supported by CCF-0728839. Email:samir@cs.umd.edu.
†The bulk of this work was done while Matt was at the Dept. of Computer Science, University of Maryland,

College Park, and supported by REU Supplement to CCF-0430650. Current email: matt@mattmccutchen.net.

1



2 Formulation as a Min-Cost Max-Flow Problem

We formulate the assignment problem as a min-cost max-flow problem, where each unit of flow
represents one review. The construction is somewhat involved in order to incorporate all the
desired incentives. In several places, it makes use of sets of “parallel edges” of different costs
connecting a single pair of nodes (x, y) to allow flow to be sent from x to y at a cost that grows
faster than linear in the amount of the flow. For example, if there are five unit-capacity edges from
x to y of costs 1, 3, 5, 7, and 9, then any integer amount f ≤ 5 of flow can be sent from x to y at
a cost of f2.

An example of the graph is shown in Figure 1. We have a source s and a sink t. For each paper
j we create a set of nodes p1

j , p
2
j , p

3
j , and for each reviewer i we create a set of nodes r1

i , r
2
i , r

3
i . (The

rationale for these sets is discussed below.) Flow can pass from s through one or more of the nodes
rt
i and one or more of the nodes pt

j to the sink to represent a review by reviewer i of paper j.
Each paper has an edge of capacity q to the sink, indicating that it needs q reviews. In general,

these edges will constitute the min cut, so any max flow will saturate them and thereby provide
all the required reviews. We take the min-cost max flow in order to provide the reviews in the
“best” possible way.

Each reviewer has a zero-cost edge of capacity L from the source so that he/she can be assigned
L papers. If that were all, we would get a perfectly load-balanced solution, but we may be able
to improve the quality of the assignments by allowing some imbalance. Therefore, we allow each
reviewer to be overloaded by up to C papers (C is the load imbalance parameter) via a set of C
additional unit-capacity edges from the source. We make the cost of the lth edge an increasing
function f(l) to provide an incentive to balance load across reviewers. Since 2f(1) < f(1) + f(2),
a solution that loads two reviewers each by L + 1 will be preferred to a solution that loads one
reviewer by L and the other by L+2 unless the load imbalance in the second solution is outweighed
by other benefits.

For each reviewer i and paper j, there is a unit-capacity edge from i to j allowing that pair
to be assigned, unless the reviewer declared a conflict of interest, in which case the edge is not
present. The edge cost is based on the preference value aij stated by reviewer i for paper j. For
values on the NSF scale of 1 (best) to 40 (worst), we chose the cost function (10 + aij)2, in an
attempt to provide an incentive to avoid really bad matched pairs without completely masking the
difference between a good matched pair and an excellent one. This choice seeks only to achieve
a natural relationship between a linear preference scale as normally interpreted and the costs to
be used in the optimization. We realize that strategic reviewers will take the cost function into
account in choosing what preference values to submit, in which case its form matters little.

Alongside these purely additive per-review costs, we want to avoid an individual reviewer
getting too many papers he/she does not like. With respect to a reviewer i, we classify papers as
“interesting”, “boring”, or “very boring” based on their preference values; the thresholds for these
classes are currently the same for all reviewers. The edge for reviewer i and paper j leaves from r1

i

if j is interesting, r2
i if j is boring, or r3

i if j is very boring. Since all edges from the source enter
r1
i , flow for boring and very boring papers is forced to pass through a set of parallel edges from r1

i

to r2
i , and flow for very boring papers must pass through an additional set of parallel edges from

r2
i to r3

i . In each of these sets, we make the cost of the lth edge an increasing function of l to
provide an incentive to balance the load of boring papers in the same way as for overload.

Finally, we would like at least one or two of each paper’s reviews to be well qualified, if
possible. The method is the same as that for reviewer fairness. With respect to a paper j, we
classify reviewers as “expert”, “knowledgeable”, or “general” by comparing the expertise values

2



Parallel edges with total capacity

(capacity, cost)

r3
1

r2
1

r1
2

r3
2

r1
1

r1
3

r2
3

r3
3

p1
2

p2
2

p3
2

L + C

Nodes for reviewer 3

Nodes for reviewer 2

Nodes for paper 2

(L, 0)

C

C
s

Nodes for reviewer 1

Nodes for paper 1(L, 0)

(L, 0)

t

p1
1

p2
1

p3
1

(1,
(10

+ a21
)
2 )

(1
, (
10

+
a 31

)
2 )

C

C

r2
2

B

A

F (∞, 0)

G (1,−c2) and (∞, 0)

(1,−c1)
E

D
(1, (10 + a

11) 2)

with the implementation
Edge groups cross-referencedA

H (q, 0)

(q, 0)

Figure 1: Flow Construction.

3



to uniform thresholds. (Since this is the only place the expertise values are used, we effectively
assume expertise takes on only these three values.) Edges representing expert reviews enter p1

j ,
edges for knowledgeable reviews enter p2

j , and edges for general reviews enter p3
j ; the edge to the

sink leaves p3
j . A paper’s first knowledgeable (or expert) review scores a bonus c2 by traversing a

unit-capacity edge of cost −c2 from p2
j to p3

j , and an additional expert review scores another bonus
c1 by traversing a unit-capacity edge of cost −c1 from p1

j to p3
j . In addition to the bonus edges,

there are edges of zero cost and unlimited capacity that reviews can follow from p1
j to p2

j and from
p2

j to p3
j in order to reach the sink. The choice to offer bonuses for two reviews was based on the

value q = 3; this would be easy to change for other values of q.
In the example in Figure 1, paper 1 is interesting to reviewer 1 and boring to reviewers 2 and

3. Reviewer 2 is expert on paper 1, with reviewers 1 and 3 merely knowledgeable. (Reviewer
edges for paper 2 are not shown.) This illustrates how, in principle, the preference and expertise
relations might differ. Each is taken into account at a different stage of the construction.

The cost of a flow (assignment) is the sum of its reviewer overload costs, per-review costs, and
reviewer boring / very boring load costs, minus paper bonuses. Any one of these components can
be traded off against the others.

3 Evaluation

We have implemented the matching algorithm, based on the construction above, in Haskell. The
construction is intended to illustrate ways to model real concerns that we find reasonable a priori.
We do not have enough experience with real-world instances to be confident that each part of the
construction serves its intended purpose or that the parameter values we have chosen are suitable.
Fortunately, the parameter values are easy to change in the source code of our implementation,
and even substantive changes to the graph structure are not too hard to make. At a minimum,
we believe that min-cost max-flow provides a reasonable framework for global optimization of an
assignment.

We have worked with Michael Hicks, program chair of POPL 2012, to apply our method to the
paper assignment problem for that conference. The set of POPL 2012 reviewers consisted of the
program committee (PC) and an external review committee (ERC), where the ERC served two
purposes:

• To provide up to one knowledgeable (or expert) review per paper if prior knowledge of the
topic was hard to find on the PC.

• To provide all reviews of papers with an author on the PC (“PC papers”), which were
considered to pose an implicit conflict of interest to all PC members.

The special policy for ERC reviews of non-PC papers was realized via a more complex paper-side
gadget, not described here. Based on an evaluation tool he wrote as well as manual inspection,
Dr. Hicks was satisfied that the decisions made by the matching tool closely reflected the best he
could have done manually.

We are looking for additional opportunities to apply the matching tool. Anyone interested is
invited to contact us so we can help adapt it to the scenario and document the experience gained.

4



4 Getting the Tool

A distribution containing the source code for the matching tool as well as this document may be
browsed or downloaded at:

https://mattmccutchen.net/match/

There are currently two branches:

• master has the tool as originally designed for NSF, with no distinction between preference
and expertise.

• popl2012 is the basis of the version used for POPL 2012. The main differences are that it
has separate preference and expertise, support for “fixing” previously chosen reviewer-paper
pairs (buggy, however), and the special ERC gadget.

We regret that we do not currently have a single well-maintained version of the tool to recommend.

References

[1] R. Ahuja, T. Magnanti and J. Orlin. Network Flows: Theory and Applications. Prentice Hall.

5


