module ProposalMatcher where import Data.Array.IArray import Data.Graph.Inductive.Graph import Data.Graph.Inductive.Tree import Data.List import PMInstance import PMConfig prefBoringness cfg p = if prefIsVeryBoring cfg p then 2 else if prefIsBoring cfg p then 1 else 0 prefExpertness cfg p = if prefIsExpert cfg p then 2 else if prefIsKnowledgeable cfg p then 1 else 0 data REdge = REdge { reIdx :: Int, reCap :: Int, reCost :: Wt } instance Show REdge where show (REdge idx cap cost) = "#" ++ (show idx) ++ ": " ++ (show cap) ++ " @ " ++ (show cost) data ReductionResult = ReductionResult { rrGraph :: Gr () REdge, rrSource :: Node, rrSink :: Node, rrEIdxBounds :: (Int, Int), rrEDIdx :: (Int, Int) -> Int } -- Hack: show as much of the reduction result as we easily can data RR1 = RR1 (Gr () REdge) Node Node (Int, Int) deriving Show instance Show ReductionResult where show (ReductionResult g so si eib _) = show (RR1 g so si eib) indexEdges :: Int -> [(Int, Int, REdge)] -> (Int, [(Int, Int, REdge)]) indexEdges i [] = (i, []) indexEdges i ((v1, v2, re):es) = let (imax, ies) = indexEdges (i+1) es in (imax, (v1, v2, re{ reIdx = i }) : ies) doReduction :: PMConfig -> PMInstance -> ReductionResult doReduction cfg (PMInstance numRvrs numProps rloadA prefA) = let source = 0 sink = 1 rvrNode i boringness = 2 + 3*i + boringness propNode j expertness = 2 + 3*numRvrs + 3*j + expertness numNodes = 2 + 3*numRvrs + 3*numProps edIdx (i, j) = i*numProps + j in let totalReviews = (reviewsEachProposal cfg) * numProps totalRelativeLoad = foldl (+) 0 (map (rloadA !) [0 .. numRvrs - 1]) targetLoad i = ceiling (widenInteger totalReviews * (rloadA ! i) / totalRelativeLoad) -- Edge groups A through H are indicated in the figure in the paper. edgesABC = do i <- [0 .. numRvrs - 1] let tl = targetLoad i let freeEdgeA = (source, rvrNode i 0, REdge undefined tl 0) let nonfreeEdgesA = do l <- [tl .. tl + (loadTolerance cfg) - 1] let costA = marginalLoadCost cfg ((widenInteger (l - tl) + 1/2) / widenInteger (loadTolerance cfg)) [(source, rvrNode i 0, REdge undefined 1 costA)] let edgesBC = do l <- [0 .. tl + (loadTolerance cfg) - 1] let costB = marginalBoringCost cfg ((widenInteger l + 1/2) / widenInteger tl) let edgeB = (rvrNode i 0, rvrNode i 1, REdge undefined 1 costB) let costC = marginalVeryBoringCost cfg ((widenInteger l + 1/2) / widenInteger tl) let edgeC = (rvrNode i 1, rvrNode i 2, REdge undefined 1 costC) [edgeB, edgeC] [freeEdgeA] ++ nonfreeEdgesA ++ edgesBC edgesD = do i <- [0 .. numRvrs - 1] j <- [0 .. numProps - 1] let pref = prefA ! (i, j) -- We must generate an edge even if there is a conflict -- of interest; otherwise we'll fail to read its flow -- value in doMatching. [(rvrNode i (prefBoringness cfg pref), propNode j (prefExpertness cfg pref), REdge (edIdx (i, j)) (if prefIsConflict cfg pref then 0 else 1) (assignmentCost cfg pref))] edgesEFGH = do j <- [0 .. numProps - 1] let edgeE = (propNode j 2, propNode j 0, REdge undefined 1 (-(expertBonus cfg))) let edgeF = (propNode j 2, propNode j 1, REdge undefined (reviewsEachProposal cfg) 0) let edgeGFirst = (propNode j 1, propNode j 0, REdge undefined 1 (-(knowledgeableBonus cfg))) let edgeGRest = (propNode j 1, propNode j 0, REdge undefined (reviewsEachProposal cfg - 1) 0) let edgeH = (propNode j 0, sink, REdge undefined (reviewsEachProposal cfg) 0) [edgeE, edgeF, edgeGFirst, edgeGRest, edgeH] theNodes = [(x, ()) | x <- [0 .. numNodes - 1]] -- Index the non-D edges unindexedEdges = edgesABC ++ edgesEFGH (imax, reindexedEdges) = indexEdges (numRvrs*numProps) unindexedEdges theEdges = edgesD ++ reindexedEdges in ReductionResult (mkGraph theNodes theEdges) source sink (0, imax-1) edIdx -- Returns a list of reviews as ordered pairs (reviewer#, proposal#). doMatching :: PMConfig -> PMInstance -> PMatching doMatching cfg inst@(PMInstance numRvrs numProps _ _) = let ReductionResult graph source sink idxBounds edIdx = doReduction cfg inst in let flowArray = minCostFlow cfg idxBounds reIdx reCap reCost graph (source, sink) in let pairs = do i <- [0 .. numRvrs - 1] j <- [0 .. numProps - 1] if flowArray ! edIdx (i, j) == 1 then [(i, j)] else [] in PMatching (sort pairs) -- for prettiness