
The least-unpopularity-factor and least-unpopularity-margin

criteria for matching problems with one-sided preferences

Richard Matthew McCutchen∗

Abstract

Given a set of people, a set of positions available to them (e.g., houses or jobs),
and each person’s preference ordering of the positions, how shall we assign the people
to the positions? Since different matchings inevitably favor different people, it is not
clear which matching(s) should be considered best overall; many different optimality
criteria are possible. One is popularity: a matching is popular if no other matching
beats it in a majority vote of the people. Popularity has a property that helps it
resist manipulation and popular matchings can be found quickly when they exist, but
for some sets of preferences, no matching is popular. In this paper, we present the
least-unpopularity-factor and least-unpopularity-margin criteria, two generalizations of
popularity that preserve the resistance to manipulation but give an optimal matching
for every set of preferences. Under each of these two generalizations, we show that the
“badness” of a given matching can be calculated efficiently but it is NP-hard to find an
optimal matching. This work represents a step toward the goal of a computer program
to automatically solve real-world matching problems according to a good optimality
criterion.

1 Introduction

One of the most common administrative tasks that many organizations perform is assigning people
to positions of some kind based on preferences expressed by the people, the positions, or both. For
example, the University of Maryland Department of Computer Science assigns teaching assistants to
classes according to the teaching assistants’ preferences. The National Resident Matching Program
(see [9]) assigns residents to hospitals based on the preferences of both residents and hospitals. Gale
and Shapley [3] even suggested that students could be assigned to colleges by a central organization
that observes the preferences of both sides.

All of these organizations face the problem of choosing a matching of people to positions that
gives fair consideration to everyone’s preferences. In this paper, we consider the problem in which
the people express preferences for the positions, but not vice versa: the preferences are one-sided.
An instance of this problem consists of a set of people, a set of positions, and a preference list for
each person giving his/her preference ordering of the subset of the positions that he/she would be
willing to occupy; these orderings may contain ties. The problem is to find the matching that is
best overall in light of the preferences. In a valid matching, each person is either matched to a
position on his/her preference list or left without a position. For convenience, we think of each

∗Department of Computer Science, University of Maryland, College Park, MD 20742. Email: rmccutch@umd.edu .

1



person p as having a last resort position LR(p) available only to p as p’s last choice; assigning a
person to his/her last resort represents leaving him/her without a position.

What makes this problem interesting is that it is not clear what it means for a matching to
be “best”. Since it is almost never possible to give everyone his/her first choice simultaneously,
any matching will inevitably make trade-offs, pleasing some people at the expense of others. If
we can change a matching to make someone better off without making anyone else worse off (a
Pareto improvement), of course we should do so, but there are still many Pareto efficient matchings
that admit no such improvement, and each makes a different set of trade-offs. To decide among
these, we need an optimality criterion that, for each instance, designates one or more matchings
as optimal. Then, to apply the criterion in practice, we need an efficient algorithm to compute an
optimal matching for a given instance. Ideally, our criterion should be “fair” in some sense and
should resist attempts by the people to obtain better positions by lying about their preferences.

Many different optimality criteria have been proposed, studied, and used. Some optimality
criteria are based on minimizing various functions of the numerical preference ranks that the people
give to the positions they receive, but unfortunately, such criteria tend to be easy to manipulate.
For example, at one point MIT assigned incoming students to residence halls by minimizing the
sum of the cubes of the numerical ranks, and a student could improve his/her chances of being
assigned to his/her true first-choice residence hall by inserting other highly desirable residence halls
near the top of his/her preference list [8].

One criterion that does not use numerical ranks and is therefore less susceptible to this kind of
manipulation is popularity. A matching M is popular if there does not exist another matching N
that beats it by majority vote, where each person votes for the matching that gives him/her the
position he/she likes better or abstains if he/she likes the two positions equally well. For example,
consider the instance I and matchings M and N shown below. (In this paper, we will display
instances as tables that give the preference rank number (or − if forbidden) for each person (row)
and position (column); last resort positions are never shown. We will display a matching as a set
of parenthesized rank numbers. Here, I contains three people A, B, C and three positions w, x, y.
Person B likes position w better than position x and is unwilling to occupy position y. In matching
M , he occupies position x.)

I =


w x y

A 1 − 2
B 1 2 −
C − 1 2

, M =


w x y

A (1) − 2
B 1 (2) −
C − 1 (2)

, N =


w x y

A 1 − (2)
B (1) 2 −
C − (1) 2


M is not popular because N beats it by majority vote (A and C outvote B in favor of N), while
one can easily verify that N is popular. Abraham et al. [1] gave an efficient algorithm to compute
a popular matching for a given instance when one exists. Unfortunately, some instances, such I2,
have no popular matching because of nontransitivity in the voting:

I2 =


w x y

A 1 2 3
B 1 2 3
C 1 2 3


Given any matching, we can obtain a matching that beats it by a vote of 2 to 1 by promoting the
occupant of y to x and the occupant of x to w and demoting the occupant of w to y.

In general, when no matching meets the standard of popularity, we would still like to choose
a merely “poor” matching over a “terrible” one. To this end, we will propose two numerical

2



measures of a matching’s “badness”: its unpopularity factor and its unpopularity margin. The
least-unpopularity-factor and least-unpopularity-margin optimality criteria, respectively, are based
on the minimization of these two measures. We will show that a given matching’s unpopularity
factor and unpopularity margin can be calculated efficiently using algorithms based on shortest
paths and minimum-cost flow, respectively. However, surprisingly, it is possible to encode the
structure of a 3-satisfiability instance in the people’s preferences so as to prove that finding an
optimal matching under either criterion is NP-hard; we will present this rather unusual reduction
in detail.

The inablity to find optimal matchings severely limits the immediate practical applicability of
these two criteria. Nevertheless, by ruling them out, my work makes a step toward the goal of
finding a criterion that has all the desired properties. Such a criterion would make it possible for
organizations to solve their matching problems easily, fairly, and objectively by computer, which
would constitute a significant advance over the currently widespread technique of eyeballing all the
preferences and manually constructing a matching one person at a time.

2 Related work

The notion of popularity was first introduced by Gärdenfors [4] in the context of two-sided prefer-
ences. More recently, Abraham et al. [1] discussed it for one-sided preferences and gave the first
polynomial-time algorithm to find popular matchings. On an instance with n people and a total
of m preference-list entries, the algorithm runs in O(

√
nm) if there are ties and O(n + m) if not.

Abraham and Kavitha [2] suggested that, when no popular matching exists, a matching could be
chosen based on the graph induced by the “beats by majority vote” relation among matchings. In
this paper, we take a different approach by generalizing the “beats” relation itself.

Rank-maximality is another criterion. A matching M is rank-maximal if it has the lexicograph-
ically maximum tuple (n1, n2, . . .), where ni is the number of people assigned to positions they
respectively ranked ith. Irving et al. [6] found an algorithm that computes a rank-maximal match-
ing in O(min(n + C,C

√
n)m) time, where C is the worst rank to which any person is assigned in

the result (e.g., 3 for a third choice).
If each person gives numerical values to the positions instead of ordering them, the most natural

rule, known as weighted matching, is to maximize the total value of all pairs. In instances with two-
sided preferences (we think of people as applicants and positions as recruiters), the most commonly
used rule is stable marriage. A matching is stable if no currently unpaired applicant and recruiter
both prefer each other to their current partners. Gale and Shapley [3] proposed the rule, proved
that a stable matching always exists, and gave an algorithm to find one.

3 The unpopularity factor

We will begin by defining the unpopularity factor of a matching.

Definition 3.1. If M and N are two matchings for the same instance, N dominates M by a factor
of u/v, where u is the number of people who strictly prefer N to M and v is the number of people
who strictly prefer M to N .

Definition 3.2. The unpopularity factor of a matching M is the maximum factor by which it is
dominated by any other matching (ignoring matchings that give u = v = 0).

Note that a matching N dominates a matching M by a factor of ∞ if and only if N is a Pareto
improvement over M ; thus M has a finite unpopularity factor if and only if it is Pareto efficient.

3



Furthermore, a matching is popular as defined by Abraham et al. [1] if and only if its unpopularity
factor is at most 1.

The least unpopularity factor of an instance is the minimum unpopularity factor of all of its
matchings, and the matching(s) that achieve this minimum are considered optimal. Thus, different
instances have different numbers of optimal matchings, but every instance has at least one.

Let us revisit the examples from the Introduction. M has unpopularity factor 2 because N
dominates it by a factor of 2/1 = 2; it is clear by inspection that no other matching dominates M
by a greater factor. However, N has unpopularity factor 1: the only person who could possibly
want to switch matchings is A, and to promote A we must demote B to his last resort, achieving
a dominance factor of 1/1 = 1. In I2, the six matchings that fill all three positions all have
unpopularity factor 2 because the people in x and y can improve at the expense of the person in
w. No matching has a smaller unpopularity factor, so these six matchings are optimal for I2.

3.1 Differences between matchings: reassignments, paths and cycles

To determine the unpopularity factor of a matching directly from the definition, we would have
to consider all possible alternative matchings and calculate the factor by which each dominates
M , which would take exponential time. Fortunately, there is an efficient way to calculate the
unpopularity factor using the concept of pressures, which we will develop next.

We can think of an instance as a bipartite graph whose vertex sets are the people and the
positions and whose edges are the preference-list entries. A matching of the instance is then just
a matching of the graph that uses all the people (because every person has a position, though it
might just be her last resort).

In what ways can two matchings M and N differ? Their symmetric difference, which we will
denote M ⊕N , consists of vertex-disjoint paths and/or cycles that are alternating in the sense that
their edges come alternately from M and N . Furthermore, the alternating paths stop at positions,
because if a path stopped at a person, she would lack a position in one matching, which is not
allowed. We can think of an alternating path as a sequence of reassignments: one person moves to
a different position, ejecting its original occupant; the occupant takes another position, ejecting its
occupant; and so forth until someone takes a previously unoccupied position. Each reassignment
may constitute a promotion or demotion of the reassigned person according to his/her preferences.
An alternating cycle is similar except that all reassignments must “happen at once”.

Conversely, we say that a path or cycle X is applicable to a matching M if M ⊕X is a valid
matching. If so, applying X to M gives M ⊕X; X represents the change from M to M ⊕X.

With this intuition, we can define pressures.

3.2 Pressures

Definition 3.3. Let M be a Pareto efficient matching. The pressure of a filled position p in M
is the largest k for which there exists an alternating path applicable to M that promotes k people
without demoting anyone and then ends with the demotion of the occupant of p to her last resort.
Note that the demotion by itself constitutes such a path for k = 0. (The term “pressure” comes
from the idea of k people stacked up behind p, wishing that its occupant will leave so they can all
become better off.)

Theorem 3.4. The unpopularity factor of a Pareto efficient matching M is the greatest pressure
of any of its filled positions.

Proof. Recall that the unpopularity factor of M is the greatest pressure by which any other match-
ing dominates M . To establish that the two maxima are equal, we’ll show that each is at least as

4



great as the other, i.e., (a) if M has a position p of pressure k, then there exists a matching N that
dominates M by a factor of at least k and (b) if a matching N dominates M by a factor of f , then
M has a position of pressure at least dfe.

(a): Simply let N be the result of applying the path that determines the pressure of p to M .
The path makes k people better off and one person worse off, so N dominates M by a factor of k.

(b): Let u and v be the total number of people better and worse off in N than in M , so that
f = u/v. We begin by modifying N so that everyone who is worse off in N than in M is demoted
all the way to his last resort in N ; this does not change u or v. Decompose M ⊕N into a collection
of paths and cycles X1, . . . , Xc, discarding those that neither promote nor demote anyone. Each
Xi must demote at least one person so that it is not a Pareto improvement over M . That person
is demoted to his last resort, and since there is no one else to leave the last resort, the demotion
must be the last reassignment in Xi; thus Xi is a path (not a cycle). A path has only one last
reassignment, so each Xi demotes exactly one person to his last resort, and c = v.

For each i, let ui be the number of people promoted by Xi; of course,
∑

i ui = u. Choose an
i such that ui ≥ du/ve = dfe; by the Pigeonhole Principle, one must exist. Let p be the position
whose occupant is demoted by Xi. Observe that Xi has exactly the form considered in Definition 3.3
for the pressure of p, and it makes at least dfe people better off; thus the pressure of p is at least
dfe.

Corollary 3.5. The unpopularity factor of a matching, if finite, is an integer.

3.3 Computing the unpopularity factor

We can find the pressures of a matching using the following simple algorithm based on Goldberg’s
shortest-path algorithm [5]:

Algorithm 3.6. Determines whether a matching M is Pareto efficient and, if so, finds the pressure
of each filled position in M . Runs in O(m

√
n) time, where n is the number of positions and m is

the total number of entries of the preference lists.

Method. Construct a graph G whose vertices are the positions of M and whose edges are as follows:

• There is an edge of length −1 from p1 to p2 if p1 is filled by a person who would strictly prefer
to have p2.

• There is an edge of length 0 from p1 to p2 if p1 is filled by a person who is indifferent to
having p2.

• There is no edge from p1 to p2 if p1 is empty or its occupant strictly prefers p1 over p2 or is
unwilling to occupy p2.

Run Goldberg’s algorithm on G, using all positions as sources so that the algorithm finds
the shortest path arriving at each position. If Goldberg’s algorithm finds a negative cycle in G
or a negative-length path arriving at an unfilled position, announce that M is Pareto inefficient.
Otherwise, the pressure of each position is the negative of the length of the shortest path arriving
at it.

Correctness. Each edge e = (p1, p2) in G represents the reassignment of the occupant of p1 to p2;
the edges of G correspond exactly to the reassignments that are not demotions. Furthermore, e
has weight −1 if and only if the reassignment is a promotion, so the length of a path or cycle in G
is the negative of the number of people it promotes.

5



In light of this, a negative cycle in G represents a Pareto-improving cycle applicable to M , and
a negative-length path to an unfilled position represents a Pareto-improving path in M ; thus the
algorithm’s determination of whether M is Pareto efficient is correct. If M is Pareto efficient, paths
in G arriving at a position p represent paths applicable to M of the form considered in Definition 3.3
with the negative of a path’s length corresponding to k in that definition. Thus, the negative of
the shortest length of a path arriving at p gives the pressure of p, as desired.

Running time. Each edge (p1, p2) of G corresponds to a different preference-list entry in M , so the
number of edges does not exceed the total number of preference-list entries. Since edge lengths
are at least −1, Goldberg’s algorithm runs in O(m

√
n) time, and the additional overhead in this

algorithm is less than that.

To find the unpopularity factor of a matching, we use Algorithm 3.6 to find the pressures and
then simply take the highest pressure.

4 The unpopularity margin

The unpopularity margin of a matching is defined the same way as the unpopularity factor, except
we subtract the numbers of votes instead of dividing them:

Definition 4.1. If M and N are two matchings for the same instance, N dominates M by a margin
of u−v, where u is the number of people who strictly prefer N to M and v is the number of people
who strictly prefer M to N .

Definition 4.2. The unpopularity margin of a matching M is the maximum margin by which it
is dominated by any other matching.

Note that the unpopularity margin of a matching M is an integer, and it is nonnegative because
M dominates itself by a margin of zero. Just as we can express calculating the unpopularity factor
as a shortest-path problem, we can express calculating the unpopularity margin as an min-cost max-
flow problem. Since we use integer edge capacities, we assume that edge flows are also integers.

Algorithm 4.3. Finds the unpopularity margin of a matching M in O((u + 1)m
√

r + s) time,
where r is the number of people, s is the number of positions, m is the total number of entries of
the preference lists, and u is the unpopularity margin.

Method and correctness. Construct a flow graph G having as vertices a source, a sink, and the
people and positions of M . Add an edge of unit capacity and zero cost from the source to each
person and from each position to the sink. For each preference-list entry submitted by a person A
for a position p, add a unit-capacity edge from A to p whose cost is −1, 0 or 1 as A likes p better
than, the same as, or worse than her position in M .

The flow that sends one unit from the source to each person to his/her last resort to the sink
transports r units of flow and saturates all edges leaving the source, so it is a max-flow; thus every
max-flow transports r units of flow. To do so, a max-flow must put one unit of flow through each
person, and those units must reach the sink via different positions since the capacity from each
position to the sink is limited to 1. Thus, the max-flows of G correspond exactly to the possible
matchings of the instance.

Furthermore, it should be clear that the cost of a max-flow is the negative of the margin by
which it dominates M . Thus, all we have to do is find the min-cost max-flow; the negative of its
cost gives the unpopularity margin of M . To find it, we start with the max-flow representing M
itself and augment negative cycles found using Goldberg’s shortest-path algorithm [5].

6



Running time. To find each negative cycle, we run Goldberg’s algorithm on our graph of r + s
vertices and m edges, taking O(m

√
r + s) time. Each cycle decreases the cost by at least 1 until

we reach cost −u, so we find at most u cycles; then we perform one more failed search for a cycle.
The bound follows.

5 NP-hardness of finding least-unpopularity matchings

We now use a reduction from 3-satisfiability (3SAT) to prove that the problems of finding a least-
unpopularity-factor matching and finding a least-unpopularity-margin matching for a given set
of preferences are both NP-hard; it happens that the same reduction works for both problems.
Abraham et al. [1] analyze preference sets with no ties separately from the general case of ties. We
have had no reason to make this distinction so far, but the reduction will always generate preference
lists with no ties in order to prove that even the no-ties versions of the problems are NP-hard.

The reduction converts an instance S of 3SAT to a polynomial-size preference set P and an ideal
unpopularity factor. We will show that any tuple of truth values that satisfies S can be converted
to a matching of P whose unpopularity factor does not exceed the ideal value, and vice versa; thus,
the least unpopularity factor of P is the ideal value or less if and only if S is satisfiable. Clearly, if
we had an algorithm to compute P ’s least unpopularity factor, we could use it to determine whether
S is satisfiable. Therefore, computing the least unpopularity factor of a set of preferences is at least
as hard as determining whether a 3SAT instance is satisfiable, so it is NP-hard. Computing an
actual matching of that unpopularity factor is at least as hard still. This paragraph applies equally
if “factor” is replaced by “margin”; in the description of the reduction, “unpopularity” refers to
either “unpopularity factor” or “unpopularity margin”.

5.1 Overview of the reduction design

The reduction, like most, builds P from gadgets that represent pieces of S. Each gadget will contain
some internal people and positions and some linking people; there will also be linking positions that
do not belong to any gadget. An internal person is willing to occupy only internal positions of her
own gadget, but a linking person is also open to exactly one linking position, which is always
her first choice. Any reassignment of the occupant of a linking position p is a demotion, which
(from the perspective of voting) could just as well be to his last resort as into a gadget; thus, the
dominance that can be achieved by replacing him depends only on the identity and state of the
gadget providing the replacement, not on the states of any other gadgets. In other words, gadgets
are isolated from one another unpopularity-wise; their only interactions are in which gadget gets to
fill each linking position. Thus, we can analyze each gadget’s contribution to the unpopularity of
the matching separately as a function of which linking positions the gadget gets.

Motivated by this idea, we introduce several “models” of gadget, each of which is designed to
enforce a certain constraint on which linking positions it must get by producing a low unpopularity
if the constraint is satisfied or a higher one if it is not. To represent S, we start with a set
of key linking positions representing its variables; the choice of which gadget gets each of these
positions represents a tuple of truth values for S. We then add gadgets so that satisfaction of
all of the gadget constraints is equivalent to satisfaction of S and let the ideal unpopularity of P
be the low unpopularity that would result if every gadget’s constraint were satisfied. Note that
the unpopularity factor of the matching is the highest pressure produced by any gadget, while the
unpopularity margins of separate gadgets generally add.

7



5.2 The gadgets

Our first type of gadget is the box. It consists of four internal positions, three internal people (i1,
i2, and i3), and three linking people (w, n1, and n2). Here is its structure, including the linking
positions:



x y z u lw ln1 ln2

w 2 3 5 4 1 − −
i1 1 2 3 4 − − −
i2 1 2 3 4 − − −
i3 1 2 3 4 − − −
n1 − − − 2 − 1 −
n2 − − − 2 − − 1


w is known as the wide person, and n1 and n2 are the narrow people. A box is satisfied, and
produces a pressure of 2 and a margin of 1, if either the wide person or both narrow people get
their linking positions; however, if both the wide person and at least one narrow person are denied
their linking positions, a pressure of 3 and a margin of 2 result.

A peg consists of one internal position and three linking people, all of whom want the same
linking position:


x l

f1 2 1
f2 2 1
f3 2 1


Its purpose is very simple: to always produce a pressure of 2 on l and provide a way to replace its
occupant at margin 1.

A pool consists of two internal positions and three linking people with the following structure:


x y lf1 lf2 lf3

f1 2 3 1 − −
f2 2 3 − 1 −
f3 2 3 − − 1


If k of the people are denied their linking positions, the pool has one linking position with a
pressure of k and can replace its occupant at a margin of max(k−1, 0). We want to use the pool to
distinguish between two and three people being denied linking positions. To this end, we attach a
peg to each linking position; then, all positions have pressure 2 and replacement margin 1, except
when all three positions are taken by people from other gadgets, one of them develops a pressure
of 3 and a replacement margin of 2.

5.3 Constructing the preference set

A box is a “two-for-one” device: if another gadget takes its wide linking position, it demands both
narrow linking positions. For any k, we can construct a k-for-one device from k − 1 boxes by
identifying the wide position of each box after the first with a narrow position of the previous box.
If we identify the ultimate wide positions of two such devices, we can get a u-for-v device for any
desired u and v.

For each variable xi of the 3SAT instance of S, we generate a many-for-many device whose two
sets of narrow positions represent the references to xi and the references to ¬xi in the clauses of S,
respectively. The device for a variable x with four ordinary references and four negated ones could
be diagrammed like this:

8



x
x

x ~x
~x

~x

~xx

(Boxes represent boxes, circles represent linking positions, and lines represent linking people. In-
ternal people and positions are not shown.) In a matching that obeys all the gadget constraints,
we may assign all the linking people either to the right, filling the ¬x positions and leaving the x
positions open, or to the left, filling the x positions and leaving the ¬x positions open. These two
possibilities correspond to making x true or false, respectively. In either case, a linking position is
left open if and only if the reference it represents evaluates to true.

Now, we add a pool for each clause of S and identify its three linking positions with linking
positions of the variable devices according to the three references the clause contains. The pool’s
constraint is that at least one of its linking people receives a linking position, which means that at
least one of the clause’s references evaluates to true, i.e., the clause is satisfied. Thus, we can see
that a matching that obeys all the gadget constraints corresponds to a tuple of truth values that
satisfies every clause of S. We let the ideal unpopularity factor be 2 (regardless of S) and the ideal
unpopularity margin be 6c− 2v, where c is the number of clauses and v is the number of variables
in S. This margin is the sum of the margin of 1 at satisfaction for each of the 3c − 2v boxes and
3c pegs.

5.4 Converting satisfying truth values to an ideal matching

The previous subsections have given an intuitive explanation of how the preference set P represents
the original 3SAT instance S. In the next two subsections, we will show in more detail that a tuple
of truth values satisfying S can be converted to an ideal matching and that no ideal matching exists
if S is unsatisfiable, proving the correctness of the reduction.

Suppose we have a tuple of truth values (t1, . . . , tv) that satisfies S; we construct a matching
M as follows. For each variable xi, we decide how to assign the people in its device based on ti.
If ti is true, we match each box on the non-negated (xi) side according to the first table below,
filling its wide linking position, and each box on the negated (¬xi) side according to the second,
filling its two narrow linking positions. Each table’s superscripts give the pressures generated by
the box shown; a linking position may end up with a higher pressure from another gadget that is
connected to it. In the first table, we let n1 be a/the person whose linking position is shared with
a pool (rather than a box); this is important so that the pressure of 2 exerted by the box on the
position is no worse than that exerted by the attached peg. We then assign n2 to his last resort.



x2 y1 z0 u1 l0w l2n1 l1n2

w 2 3 5 4 (1) − −
i1 (1) 2 3 4 − − −
i2 1 (2) 3 4 − − −
i3 1 2 (3) 4 − − −
n1 − − − (2) − 1 −
n2 − − − 2 − − 1





x2 y1 z0 u0 l1w l0n1 l0n2

w 2 3 5 (4) 1 − −
i1 (1) 2 3 4 − − −
i2 1 (2) 3 4 − − −
i3 1 2 (3) 4 − − −
n1 − − − 2 − (1) −
n2 − − − 2 − − (1)


Observe that each linking position connected to the device is filled exactly once, except for the
positions representing references to xi; furthermore, no pressure greater than 2 is generated. If ti
is instead false, we use the same construction but with the two sides of the device switched. Either
way, exactly those linking positions that represent references evaluating to true are left open.

9



After we match all the variable devices, we assign each pool linking person to his/her linking
position if it is available, or otherwise to the best available position in his/her pool. Since the ti
satisfy S, at least one linking person from each pool will get a linking position, so each pool only
needs to accommodate at most two people. This table shows how a pool can hold two people (the
pressure superscripts consider the attached pegs as well as the pool itself):


x1 y0 l2f1 l2f2 l2f3

f1 (2) 3 1 − −
f2 2 (3) − 1 −
f3 2 3 − − (1)


It should be clear that moving more people to linking positions does not increase the pressures.

The argument that M has the ideal popularity factor 2 is nice and easy: nowhere in the above
did we incur a pressure greater than 2. Showing that M has the ideal unpopularity margin 6c− 2v
takes more work. We will appeal to the following lemma:

Theorem 5.1. If M is a Pareto efficient matching, the number of filled positions in M that have
pressure 2 or greater is an upper bound on the unpopularity margin of M .

Proof. Let N be a matching that dominates M by the greatest margin, which is M ’s unpopularity
margin. As in the proof of Theorem 3.4, we modify N so that all demotions are to last resorts
and observe that M ⊕N becomes a collection of vertex-disjoint paths, each of which promotes one
or more people and then demotes one person to her last resort. (No path can consist of just a
demotion because it could be dropped, making N dominate M by a greater margin.) Consider a
path W that promotes k people; it contributes k − 1 to N ’s dominance margin over M . For each
i, let pi be the position filled by the ith promotion. If, for some i, we replace the portion of W
after pi with a demotion of the occupant of pi to his last resort, we get a path demonstrating that
the pressure of pi is at least i. In particular, p2, . . . , pk have pressure at least 2. By charging W ’s
dominance-margin contribution of k − 1 to these k − 1 positions, we see that the total dominance
margin is at most the total number of filled positions of pressure 2 or greater, as desired.

Now we just count the positions of pressure 2 in M . Every linking position connected to a pool
has pressure 2 by virtue of its peg; there are 3 such positions for each clause for a total of 3c. Each
box’s internal position x also has pressure 2. S contains 3c variable references, and each gets its
own box except that the two endmost references on each of the 2 ends of each of the v variable
devices share a box; thus there are 3c−2v boxes. This makes a total of 6c−2v positions of pressure
2, and one can check that there are no others. By Theorem 5.1, M has unpopularity margin at
most 6c− 2v, as desired.

Although it is not needed for the correctness of the reduction, we mention that one can recover
a satisfying tuple of truth values from an ideal matching M by looking at who occupies the central
linking position of each variable xi’s device. We set ti to true or false as that position is filled by
the ultimate wide person from the non-negated or negated side of the device, respectively.

5.5 Nonexistence of ideal matchings for unsatisfiable 3SATs

For the other direction of the correctness proof, suppose that S is unsatisfiable and let M be an
arbitrary Pareto efficient matching of P ; we will show that M has neither the ideal unpopularity
factor nor the ideal unpopularity margin. It should be clear from previous discussion in this section
that, since S is unsatisfiable, M cannot satisfy all the gadget constraints, but we still must show
that this results in non-ideal unpopularities.

10



M must dissatisfy either a pool or a box. Suppose first that it dissatisfies a box, i.e., both
the wide person w and at least one narrow person (say n1) are denied linking positions. The four
people w, i1, i2, and i3 are all open exactly to the four positions x, y, z, and u. If one of the
positions were empty, one of the people would be at her last resort and eager to fill it, a Pareto
improvement; thus M must fill all four positions. If n1 is at his last resort, then we could promote
him to u, its occupant to y, and its occupant to x, demoting the occupant of x to his last resort.
Otherwise, one of w, i1, i2, i3 is at her last resort, and we could promote her to z, its occupant to
y, and its occupant to x, again demoting the occupant of x. Either plan gives a dominance margin
of 2 and shows that the pressure of x is at least 3.

On the other hand, if M dissatisfies a pool (by denying all three of its people their linking
positions), then one of the people must be in x, one must be in y, and the third (call him p) must
be at his last resort. We could promote p to y, its occupant to x, and its occupant to his linking
position, demoting its previous occupant; this plan also gives a pressure of 3 (this time on the
linking position) and a dominance margin of 2.

The pressure of 3 is enough to show that M fails to achieve the ideal unpopularity factor of 2.
Unforunately, we lack a nice analogue to pressure for margins, so to show that M ’s unpopularity
margin is non-ideal, we will construct a matching N that dominates M by a margin of more than
6c− 2v.

Consider a peg in M ; it may or may not get its linking position, but either way, x must be
filled for Pareto efficiency, and at least one person is left at her last resort. Starting from M , we
“cycle” each peg by promoting a last-resort person to x, promoting the occupant of x to the linking
position, and demoting the occupant of the linking position. There are 3c pegs, each with two
promotions and one demotion, so N dominates M by a margin of 3c so far.

Now we turn to the boxes. In each box, the three people i1, i2, and i3 are all eager to have
one of the three positions x, y, z, so M must fill those positions for Pareto efficiency. In N , we
promote whoever occupies z (it could be w rather than an ij) to y and its occupant to x, demoting
the occupant of x. There are 3c − 2v boxes, so this gives us an additional dominance margin of
3c− 2v for a total of 6c− 2v, the ideal margin.

To reach a non-ideal margin, we make use of the dissatisfied gadget. If a pool is dissatisfied,
let p be the position on which it exerts pressure 3. Instead of cycling the peg attached to p (which
contributes 1 to the dominance margin), replace the occupant of p according the pool’s plan (above),
which contributes 2 to the dominance margin. Similarly, if a box is dissatisfied, use its margin-2
plan instead of the margin-1 plan of the previous paragraph. Either way, the total dominance
margin of N over M increases to 6c− 2v + 1, so M cannot achieve the ideal unpopularity margin
and the proof is complete.

5.6 Conclusion

By means of the reduction, we have proved the following theorem:

Theorem 5.2. The least unpopularity factor and least unpopularity margin are both NP-hard to
calculate for arbitrary preference sets. Consequently, it must be NP-hard to find a matching of
minimum unpopularity factor or margin for a given preference set.

Web page

I have put up a Web page at http://mattmccutchen.net/lufm/ with some additional materials
related to this work. Notably, it has the popular-matcher, a collection of Java code containing

11



the algorithms to find the unpopularity factor and margin, the conversion from 3SAT to preference
sets, a number of heuristic algorithms for finding low-unpopularity matchings that I tested before
discovering that the problem was NP-hard, and various other items I found useful during my work.
Others are welcome to use this software to experiment further with the ideas from this paper.

Acknowledgments

I would like to thank Samir Khuller, my advisor, for introducing me to previous work on match-
ing with one-sided preferences; Brian Dean for suggesting the use of Goldberg’s algorithm in the
algorithm to calculate the unpopularity factor; and Dr. Khuller, Bobby Bhattacharjee, Glenda
Torrence, Nancy Zheng, and others for suggesting improvements to this paper and its precursors.

References

[1] D. Abraham, R. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. Proceedings of
SODA 2005: the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, 424–432.

[2] D. Abraham and T. Kavitha. Dynamic matching markets and voting paths. Proceedings of
SWAT 2006: the 10th Scandinavian Workshop on Algorithm Theory, 65–76.

[3] D. Gale and L. Shapley. College admissions and the stability of marriage. American Mathe-
matical Monthly, 16:9–15, 1962.

[4] P. Gärdenfors. Match Making: assignments based on bilateral preferences. Behavioural Sci-
ences, 20:166–173, 1975.

[5] A. Goldberg. Scaling algorithms for the shortest paths problem. Proceedings of SODA 1993:
the 4th Annual ACM-SIAM Symposium on Discrete Algorithms, 222–231.

[6] R. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal matchings.
Proceedings of SODA 2004: the 15th Annual ACM-SIAM Symposium on Discrete Algorithms,
68–75.

[7] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.
Chapter 11, “Weighted Matching.” Prentice-Hall, 1982.

[8] E. Price. Personal communication, August 2005.

[9] A. Roth. The evolution of the labor market for medical interns and residents: A case study
in game theory. Journal of Political Economy, 92:991–1016, 1984.

12


