
This is Matt McCutchen’s simplified proof of correctness of the greedy
algorithm for k-center clustering with outliers. The algorithm achieves a 4-
approximation in general and a 3-approximation when cluster centers are re-
stricted to input points or when we can enumerate all “useful” center points
in the metric space. The 3-approximation algorithm is described in Section
3 of http://www.cs.umd.edu/~samir/grant/outlier.pdf. To obtain the 4-
approximation variant, increase the radius of the disks Gi to 2r and that of the
Ei to 4r.

Theorem 1. When the algorithm is invoked with a particular value of r, it
produces a set of k clusters of radius 4r (or 3r) that covers at least as many
input points as the optimal set of k clusters of radius r.

Proof. Let E be the set of points covered by the algorithm but not the optimal
solution, and let O be the set of points covered by the optimal solution but not
the algorithm. We need to show |E| ≥ |O|.

For each i, define a “greedy set” Si = Gi −
⋃i−1

j=1 Ej ; the disk Gi is greedily
chosen to maximize |Si|. The sets Si are disjoint. Furthermore, an optimal
cluster that intersects a greedy set Si is completely covered by Ei, so no future
Si′ can contain points of Oj ; consequently, each optimal cluster intersects at
most one greedy set.

Without loss of generality, suppose optimal clusters O1, . . . , Os intersect a
greedy set while Os+1, . . . , Ok do not (0 ≤ s ≤ k). The algorithm’s solution
completely covers O1 through Os, but Os+1 through Ok may contain uncovered
points. If s = k, then we are done. Otherwise, for j = s + 1, . . . , k, let Uj =
Oj −

⋃k
i=1 Ei be the set of uncovered points in Oj . We have O =

⋃k
j=s+1 Uj .

Choose t ∈ {s + 1, . . . , k} so that |Ut| is largest; then |O| ≤ (k − s)|Ut|.
Observe that, at any stage, the greedy algorithm could have chosen Ot, and

that greedy set would contain at least the points of Ut. But the algorithm never
chose Ot, so it must have done at least as well at every stage, so |Si| ≥ |Ut|
for every i. Now, s of the optimal clusters intersect greedy sets, but we showed
previously that each is intersected by at most one greedy set. Thus, at most s
greedy sets intersect an optimal cluster, leaving at least k − s sets that do not
intersect an optimal cluster and thus contain points uncovered by the optimal
solution. These sets are disjoint, and each contains at least |Ut| points. Thus,
|E| ≥ (k − s)|Ut| ≥ |O|, as desired.

With this theorem in mind, we just do a binary search on r to find two
close-together values r− and r+ such that the algorithm covers the required
number of input points with r = r+ but not with r = r−. The first property
gives us a feasible solution of radius 4r+ and the second implies OPT > r−, so
we essentially have a 4-approximation (or similarly a 3-approximation).
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