This is Matt McCutchen's simplified proof of correctness of the greedy algorithm for k-center clustering with outliers. The algorithm achieves a 4-approximation in general and a 3-approximation when cluster centers are restricted to input points or when we can enumerate all "useful" center points in the metric space. The 3-approximation algorithm is described in Section 3 of http://www.cs.umd.edu/~samir/grant/outlier.pdf. To obtain the 4-approximation variant, increase the radius of the disks G_i to 2r and that of the E_i to 4r.

Theorem 1. When the algorithm is invoked with a particular value of r, it produces a set of k clusters of radius 4r (or 3r) that covers at least as many input points as the optimal set of k clusters of radius r.

Proof. Let \mathcal{E} be the set of points covered by the algorithm but not the optimal solution, and let \mathcal{O} be the set of points covered by the optimal solution but not the algorithm. We need to show $|\mathcal{E}| \geq |\mathcal{O}|$.

For each *i*, define a "greedy set" $S_i = G_i - \bigcup_{j=1}^{i-1} E_j$; the disk G_i is greedily chosen to maximize $|S_i|$. The sets S_i are disjoint. Furthermore, an optimal cluster that intersects a greedy set S_i is completely covered by E_i , so no future $S_{i'}$ can contain points of O_j ; consequently, each optimal cluster intersects at most one greedy set.

Without loss of generality, suppose optimal clusters O_1, \ldots, O_s intersect a greedy set while O_{s+1}, \ldots, O_k do not $(0 \le s \le k)$. The algorithm's solution completely covers O_1 through O_s , but O_{s+1} through O_k may contain uncovered points. If s = k, then we are done. Otherwise, for $j = s + 1, \ldots, k$, let $U_j = O_j - \bigcup_{i=1}^k E_i$ be the set of uncovered points in O_j . We have $\mathcal{O} = \bigcup_{j=s+1}^k U_j$. Choose $t \in \{s+1,\ldots,k\}$ so that $|U_t|$ is largest; then $|\mathcal{O}| \le (k-s)|U_t|$.

Observe that, at any stage, the greedy algorithm could have chosen O_t , and that greedy set would contain at least the points of U_t . But the algorithm never chose O_t , so it must have done at least as well at every stage, so $|S_i| \ge |U_t|$ for every *i*. Now, *s* of the optimal clusters intersect greedy sets, but we showed previously that each is intersected by at most one greedy set. Thus, at most *s* greedy sets intersect an optimal cluster, leaving at least k - s sets that do not intersect an optimal cluster and thus contain points uncovered by the optimal solution. These sets are disjoint, and each contains at least $|U_t|$ points. Thus, $|\mathcal{E}| \ge (k - s)|U_t| \ge |\mathcal{O}|$, as desired.

With this theorem in mind, we just do a binary search on r to find two close-together values r^- and r^+ such that the algorithm covers the required number of input points with $r = r^+$ but not with $r = r^-$. The first property gives us a feasible solution of radius $4r^+$ and the second implies $OPT > r^-$, so we essentially have a 4-approximation (or similarly a 3-approximation).